Displaying 161 – 180 of 234

Showing per page

The Kuranishi space of complex parallelisable nilmanifolds

Sönke Rollenske (2011)

Journal of the European Mathematical Society

We show that the deformation space of complex parallelisable nilmanifolds can be described by polynomial equations but is almost never smooth. This is remarkable since these manifolds have trivial canonical bundle and are holomorphic symplectic in even dimension. We describe the Kuranishi space in detail in several examples and also analyse when small deformations remain complex parallelisable.

The Variety of Leibniz Algebras Defined by the Identity x(y(zt)) ≡ 0

Abanina, L., Mishchenko, S. (2003)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary: 17A32; Secondary: 16R10, 16P99, 17B01, 17B30, 20C30Let F be a field of characteristic zero. In this paper we study the variety of Leibniz algebras 3N determined by the identity x(y(zt)) ≡ 0. The algebras of this variety are left nilpotent of class not more than 3. We give a complete description of the vector space of multilinear identities in the language of representation theory of the symmetric group Sn and Young diagrams. We also show that the...

Triple automorphisms of simple Lie algebras

Deng Yin Wang, Xiaoxiang Yu (2011)

Czechoslovak Mathematical Journal

An invertible linear map ϕ on a Lie algebra L is called a triple automorphism of it if ϕ ( [ x , [ y , z ] ] ) = [ ϕ ( x ) , [ ϕ ( y ) , ϕ ( z ) ] ] for x , y , z L . Let 𝔤 be a finite-dimensional simple Lie algebra of rank l defined over an algebraically closed field F of characteristic zero, 𝔭 an arbitrary parabolic subalgebra of 𝔤 . It is shown in this paper that an invertible linear map ϕ on 𝔭 is a triple automorphism if and only if either ϕ itself is an automorphism of 𝔭 or it is the composition of an automorphism of 𝔭 and an extremal map of order 2 .

Underlying Lie algebras of quadratic Novikov algebras

Zhiqi Chen (2011)

Czechoslovak Mathematical Journal

Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic type and the Hamiltonian operators in formal variational calculus. In this note we prove that the underlying Lie algebras of quadratic Novikov algebras are 2-step nilpotent. Moreover, we give the classification up to dimension 10 .

[unknown]

О.Г. Харлампович (1987)

Algebra i Logika

Currently displaying 161 – 180 of 234