Displaying 121 – 140 of 182

Showing per page

Restriction to Levi subalgebras and generalization of the category 𝒪

Guillaume Tomasini (2013)

Annales de l’institut Fourier

The category of all modules over a reductive complex Lie algebra is wild, and therefore it is useful to study full subcategories. For instance, Bernstein, Gelfand and Gelfand introduced a category of modules which provides a natural setting for highest weight modules. In this paper, we define a family of categories which generalizes the BGG category, and we classify the simple modules for a subfamily. As a consequence, we show that some of the obtained categories are semisimple.

Rigidity of generalized Verma modules

Oleksandr Khomenko, Volodymyr Mazorchuk (2002)

Colloquium Mathematicae

We prove that generalized Verma modules induced from generic Gelfand-Zetlin modules, and generalized Verma modules associated with Enright-complete modules, are rigid. Their Loewy lengths and quotients of the unique Loewy filtrations are calculated for the regular block of the corresponding category 𝒪(𝔭,Λ).

Sur la méthode des orbites pour une algèbre de Lie résoluble

Jean-Yves Charbonnel (1998)

Annales de l'institut Fourier

Soit 𝔤 une algèbre de Lie complètement résoluble sur un corps de caractéristique zéro. Soit Q un idéal 𝔤 -invariant de l’algèbre symétrique de 𝔤 . L’application de Dixmier pour 𝔤 associe à Q un idéal premier de l’algèbre enveloppante U ( 𝔤 ) de 𝔤 . Soit A ^ ( 𝔤 ) l’algèbre des opérateurs différentiels à coefficients séries formelles. Dans l’algèbre A ( 𝔤 ) des opérateurs différentiels à coefficients polynomiaux, il y a un idéal à gauche Λ 𝔤 ' ( Q ) qui contient Q et les champs de vecteurs adjoints. Il y a un plongement canonique...

Currently displaying 121 – 140 of 182