On the spectral set of a solvable Lie algebra of operators.
The purpose of these survey notes is to give a presentation of a classical theorem of Nomizu [Nom54] that relates the invariant affine connections on reductive homogeneous spaces and nonassociative algebras.
We give an elementary and self-contained proof of the theorem which says that for a semiprime ring commutativity, Lie-nilpotency, and nilpotency of the Lie ring of inner derivations are equivalent conditions
In this paper, by using the Composition-Diamond lemma for non-associative algebras invented by A. I. Shirshov in 1962, we give Gröbner-Shirshov bases for free Pre-Lie algebras and the universal enveloping non-associative algebra of an Akivis algebra, respectively. As applications, we show I. P. Shestakov’s result that any Akivis algebra is linear and D. Segal’s result that the set of all good words in forms a linear basis of the free Pre-Lie algebra generated by the set . For completeness,...
We prove that the separating space of a Lie homomorphism from a Banach algebra onto a Banach algebra is contained in the centre modulo the radical.
The aim of this work is to obtain the structure of c-covers of c-capable Lie algebras. We also obtain some results on the existence of c-covers and, under some assumptions, we prove the absence of c-covers of Lie algebras.
We prove that the universal central extension of a direct limit of perfect Hom-Lie algebras is (isomorphic to) the direct limit of universal central extensions of . As an application we provide the universal central extensions of some multiplicative Hom-Lie algebras. More precisely, we consider a family of multiplicative Hom-Lie algebras and describe the universal central extension of its direct limit.