Kac-Moody Lie Algebras and the Universal Element for the Category of Nilpotent Lie Algebras.
Motivated by the two dimensional conformal field theory with gauge symmetry, we shall study the monodromy of the integrable connections associated with the simple Lie algebras. This gives a series of linear representations of the braid group whose explicit form is described by solutions of the quantum Yang-Baxter equation.
Let be the class of all multiloop algebras of finite dimensional simple Lie algebras relative to -tuples of commuting finite order automorphisms. It is a classical result that is the class of all derived algebras modulo their centres of affine Kac-Moody Lie algebras. This combined with the Peterson-Kac conjugacy theorem for affine algebras results in a classification of the algebras in . In this paper, we classify the algebras in , and further determine the relationship between and two...
In what follows we shall describe, in terms of some commutation properties, a method which gives nilpotent elements. Using this method we shall describe the irreducibility for Lie algebras which have Levi-Malçev decomposition property.
Each Lie algebra of vector fields (e.g. those which are tangent to a foliation) of a smooth manifold définies, in a natural way, a spectral sequence which converges to the de Rham cohomology of in a finite number of steps. We prove e.g. that for all there exists a foliated compact manifold with infinite dimensional.
We know well difference Picard-Vessiot theory, Galois theory of linear difference equations. We propose a general Galois theory of difference equations that generalizes Picard-Vessiot theory. For every difference field extension of characteristic , we attach its Galois group, which is a group of coordinate transformation.