On basic and axiomatic ranks of nilpotent varieties of Lie algebras
Juri Bahturin (1982)
Banach Center Publications
Rainer Schimming (1988)
Archivum Mathematicum
Teimuraz Pirashvili (1994)
Annales de l'institut Fourier
We describe a spectral sequence for computing Leibniz cohomology for Lie algebras.
Evgenii L. Bashkirov, Esra Pekönür (2016)
Commentationes Mathematicae Universitatis Carolinae
Let be an associative and commutative ring with , a subring of such that , an integer. The paper describes subrings of the general linear Lie ring that contain the Lie ring of all traceless matrices over .
Hanna Matuszczyk (1982)
Colloquium Mathematicae
K. Tahir Shah (1976)
Annales de l'I.H.P. Physique théorique
Thomas Ernst (2017)
Special Matrices
In this paper, we define several new concepts in the borderline between linear algebra, Lie groups and q-calculus.We first introduce the ring epimorphism r, the set of all inversions of the basis q, and then the important q-determinant and corresponding q-scalar products from an earlier paper. Then we discuss matrix q-Lie algebras with a modified q-addition, and compute the matrix q-exponential to form the corresponding n × n matrix, a so-called q-Lie group, or manifold, usually with q-determinant...
Jean-Yves Charbonnel (1993)
Compositio Mathematica
Sophie Chemla (1995)
Manuscripta mathematica
Yvette Kosmann-Schwarzbach, Franco Magri (1990)
Annales de l'I.H.P. Physique théorique
Maurice Ginocchio (1974)
Annales de l'I.H.P. Physique théorique
R. Carles (1985)
Mathematische Annalen
Vyacheslav A. Artamonov (1977)
Commentationes Mathematicae Universitatis Carolinae
Chunyue Wang, Qingcheng Zhang (2018)
Czechoslovak Mathematical Journal
We construct a 3-Lie 2-algebra from a 3-Leibniz algebra and a Rota-Baxter 3-Lie algebra. Moreover, we give some examples of 3-Leibniz algebras.
Yushchenko, A. V. (2002)
Sibirskij Matematicheskij Zhurnal
Ivan Kulich (1985)
Mathematica Slovaca
Ngô van Quê, A.A.M. Rodrigues (1975)
Annales de l'institut Fourier
De même qu’avec les groupes de Lie, à tout pseudo-groupe infinitésimal de Lie sur il est associé de façon naturelle une algèbre de Lie , qui est une sous-algèbre de Lie fermée de l’algèbre de Lie de tous les champs de vecteurs formels de , l’algèbre étant munie de la topologie définie par la filtration naturelle de l’algèbre des séries formelles. Le troisième théorème fondamental de Cartan dit qu’inversement étant donnée une sous-algèbre de Lie transitive fermée de l’algèbre , il existe...
Hartmut Wiebe, Günter Scheja (1977)
Mathematische Annalen
Valiollah Khalili (2019)
Czechoslovak Mathematical Journal
We prove that the universal central extension of a direct limit of perfect Hom-Lie algebras is (isomorphic to) the direct limit of universal central extensions of . As an application we provide the universal central extensions of some multiplicative Hom-Lie algebras. More precisely, we consider a family of multiplicative Hom-Lie algebras and describe the universal central extension of its direct limit.
О.Г. Харлампович (1987)
Algebra i Logika