Basic Representations of Affine Lie Algebras and Dual Resonance Models.
We study the blow-ups of configuration spaces. These spaces have a structure of what we call an Orlik–Solomon manifold; it allows us to compute the intersection cohomology of certain flat connections with logarithmic singularities using some Aomoto type complexes of logarithmic forms. Using this construction we realize geometrically the Bernstein–Gelfand–Gelfand resolution as an Aomoto complex.
In a braided monoidal category C we consider Hopf bimodules and crossed modules over a braided Hopf algebra H. We show that both categories are equivalent. It is discussed that the category of Hopf bimodule bialgebras coincides up to isomorphism with the category of bialgebra projections over H. Using these results we generalize the Radford-Majid criterion and show that bialgebra cross products over the Hopf algebra H are precisely described by H-crossed module bialgebras. In specific braided monoidal...
We recall the notion of Hopf quasigroups introduced previously by the authors. We construct a bicrossproduct Hopf quasigroup from every group with a finite subgroup and IP quasigroup transversal subject to certain conditions. We identify the octonions quasigroup as transversal in an order 128 group with subgroup and hence obtain a Hopf quasigroup as a particular case of our construction.
Binary operations on algebras of observables are studied in the quantum as well as in the classical case. It is shown that certain natural compatibility conditions with the associative product imply properties which are usually additionally required.
We introduce a representation theory of q-Lie algebras defined earlier in [DG1], [DG2], formulated in terms of braided modules. We also discuss other ways to define Lie algebra-like objects related to quantum groups, in particular, those based on the so-called reflection equations. We also investigate the truncated tensor product of braided modules.
Forniamo un calcolo esplicito della funzione di partizione di Kostant per algebre di Lie complesse di rango . La tecnica principale consiste nella riduzione a casi più semplici ed all'uso di funzioni generatrici.