Displaying 21 – 40 of 48

Showing per page

Euclidean components for a class of self-injective algebras

Sarah Scherotzke (2009)

Colloquium Mathematicae

We determine the length of composition series of projective modules of G-transitive algebras with an Auslander-Reiten component of Euclidean tree class. We thereby correct and generalize a result of Farnsteiner [Math. Nachr. 202 (1999)]. Furthermore we show that modules with certain length of composition series are periodic. We apply these results to G-transitive blocks of the universal enveloping algebras of restricted p-Lie algebras and prove that G-transitive principal blocks only allow components...

Eulerian idempotent and Kashiwara-Vergne conjecture

Emily Burgunder (2008)

Annales de l’institut Fourier

By using the interplay between the Eulerian idempotent and the Dynkin idempotent, we construct explicitly a particular symmetric solution ( F , G ) of the first equation of the Kashiwara-Vergne conjecture x + y - log ( e y e x ) = ( 1 - e - ad x ) F ( x , y ) + ( e ad y - 1 ) G ( x , y ) . Then, we explicit all the solutions of the equation in the completion of the free Lie algebra generated by two indeterminates x and y thanks to the kernel of the Dynkin idempotent.

Exotic Deformations of Calabi-Yau Manifolds

Paolo de Bartolomeis, Adriano Tomassini (2013)

Annales de l’institut Fourier

We introduce Quantum Inner State manifolds (QIS manifolds) as (compact) 2 n -dimensional symplectic manifolds ( M , κ ) endowed with a κ -tamed almost complex structure J and with a nowhere vanishing and normalized section ϵ of the bundle Λ J n , 0 ( M ) satisfying the condition ¯ J ϵ = 0 .We study the moduli space 𝔐 of QIS deformations of a given Calabi-Yau manifold, computing its tangent space and showing that 𝔐 is non obstructed. Finally, we present several examples of QIS manifolds.

Explicit expression of Cartan’s connection for Levi-nondegenerate 3-manifolds in complex surfaces, and identification of the Heisenberg sphere

Joël Merker, Masoud Sabzevari (2012)

Open Mathematics

We study effectively the Cartan geometry of Levi-nondegenerate C 6-smooth hypersurfaces M 3 in ℂ2. Notably, we present the so-called curvature function of a related Tanaka-type normal connection explicitly in terms of a graphing function for M, which is the initial, single available datum. Vanishing of this curvature function then characterizes explicitly the local biholomorphic equivalence of such M 3 ⊂ ℂ2 to the Heisenberg sphere ℍ3, such M’s being necessarily real analytic.

Explicit representations of classical Lie superalgebras in a Gelfand-Zetlin basis

N. I. Stoilova, J. Van der Jeugt (2011)

Banach Center Publications

An explicit construction of all finite-dimensional irreducible representations of classical Lie algebras is a solved problem and a Gelfand-Zetlin type basis is known. However the latter lacks the orthogonality property or does not consist of weight vectors for 𝔰𝔬(n) and 𝔰𝔭(2n). In case of Lie superalgebras all finite-dimensional irreducible representations are constructed explicitly only for 𝔤𝔩(1|n), 𝔤𝔩(2|2), 𝔬𝔰𝔭(3|2) and for the so called essentially typical representations of 𝔤𝔩(m|n)....

Exponentiations over the quantum algebra U q ( s l 2 ( ) )

Sonia L’Innocente, Françoise Point, Carlo Toffalori (2013)

Confluentes Mathematici

We define and compare, by model-theoretical methods, some exponentiations over the quantum algebra U q ( s l 2 ( ) ) . We discuss two cases, according to whether the parameter q is a root of unity. We show that the universal enveloping algebra of s l 2 ( ) embeds in a non-principal ultraproduct of U q ( s l 2 ( ) ) , where q varies over the primitive roots of unity.

Extended lie algebraic stability analysis for switched systems with continuous-time and discrete-time subsystems

Guisheng Zhai, Xuping Xu, Hai Lin, Derong Liu (2007)

International Journal of Applied Mathematics and Computer Science

We analyze stability for switched systems which are composed of both continuous-time and discrete-time subsystems. By considering a Lie algebra generated by all subsystem matrices, we show that if all subsystems are Hurwitz/Schur stable and this Lie algebra is solvable, then there is a common quadratic Lyapunov function for all subsystems and thus the switched system is exponentially stable under arbitrary switching. When not all subsystems are stable and the same Lie algebra is solvable, we show...

Currently displaying 21 – 40 of 48