Diagrammes de Dynkin et algèbres enveloppantes d'algèbres de Lie semi-simples
In [6], there is a graphic description of any irreducible, finite dimensional module. This construction, called diamond representation is very simple and can be easily extended to the space of irreducible finite dimensional -modules.In the present work, we generalize this construction to . We show it is in fact a description of the reduced shape algebra, a quotient of the shape algebra of . The basis used in [6] is thus naturally parametrized with the so called quasi standard Young tableaux....
In un'algebra di Lie graduata thin, la classe in cui compare il secondo diamante e la caratteristica del campo soggiacente determinano se l'algebra stessa abbia o meno dimensione finita ed in tal caso forniscono anche un limite superiore a tale dimensione.
In this paper the problem of obstructions in Lie algebra deformations is studied from four different points of view. First, we illustrate the method of local ring, an alternative to Gerstenhaber’s method for Lie deformations. We draw parallels between both methods showing that an obstruction class corresponds to a nilpotent local parameter of a versal deformation of the law in the scheme of Jacobi. Then, an elimination process in the global ring, which defines the scheme, allows us to obtain nilpotent...
Twilled L(ie-)R(inehart)-algebras generalize, in the Lie-Rinehart context, complex structures on smooth manifolds. An almost complex manifold determines an "almost twilled pre-LR algebra", which is a true twilled LR-algebra iff the almost complex structure is integrable. We characterize twilled LR structures in terms of certain associated differential (bi)graded Lie and G(erstenhaber)-algebras; in particular the G-algebra arising from an almost complex structure is a (strict) d(ifferential) G-algebra...
The differential calculus on 'non-standard' h-Minkowski spaces is given. In particular it is shown that, for them, it is possible to introduce coordinates and derivatives which are simultaneously hermitian.
Using principles of quantum symmetries we derive the algebraic part of the real spectral triple data for the standard Podleś quantum sphere: equivariant representation, chiral grading γ, reality structure J and the Dirac operator D, which has bounded commutators with the elements of the algebra and satisfies the first order condition.
The purpose of this paper is to establish a connection between various objects such as dynamical -matrices, Lie bialgebroids, and Lagrangian subalgebras. Our method relies on the theory of Dirac structures and Courant algebroids. In particular, we give a new method of classifying dynamical -matrices of simple Lie algebras , and prove that dynamical -matrices are in one-one correspondence with certain Lagrangian subalgebras of .
The main goal of this paper is to show an application of Graph Theory to classifying Lie algebras over finite fields. It is rooted in the representation of each Lie algebra by a certain pseudo-graph. As partial results, it is deduced that there exist, up to isomorphism, four, six, fourteen and thirty-four -, -, -, and -dimensional algebras of the studied family, respectively, over the field . Over , eight and twenty-two - and -dimensional Lie algebras, respectively, are also found. Finally,...
Our purpose is to generalize the dispersive inequalities for the wave equation on the Heisenberg group, obtained in [1], to H-type groups. On those groups we get optimal time decay for solutions to the wave equation (decay as ) and the Schrödinger equation (decay as ), p being the dimension of the center of the group. As a corollary, we obtain the corresponding Strichartz inequalities for the wave equation, and, assuming that p > 1, for the Schrödinger equation.