Displaying 401 – 420 of 1861

Showing per page

Divergence operators and odd Poisson brackets

Yvette Kosmann-Schwarzbach, Juan Monterde (2002)

Annales de l’institut Fourier

We define the divergence operators on a graded algebra, and we show that, given an odd Poisson bracket on the algebra, the operator that maps an element to the divergence of the hamiltonian derivation that it defines is a generator of the bracket. This is the “odd laplacian”, Δ , of Batalin-Vilkovisky quantization. We then study the generators of odd Poisson brackets on supermanifolds, where divergences of graded vector fields can be defined either in terms of berezinian volumes or of graded connections. Examples...

Drinfeld doubles via derived Hall algebras and Bridgeland's Hall algebras

Fan Xu, Haicheng Zhang (2021)

Czechoslovak Mathematical Journal

Let 𝒜 be a finitary hereditary abelian category. We give a Hall algebra presentation of Kashaev’s theorem on the relation between Drinfeld double and Heisenberg double. As applications, we obtain realizations of the Drinfeld double Hall algebra of 𝒜 via its derived Hall algebra and Bridgeland’s Hall algebra of m -cyclic complexes.

Dual pairs and Kostant-Sekiguchi correspondence. II. Classification of nilpotent elements

Andrzej Daszkiewicz, Witold Kraśkiewicz, Tomasz Przebinda (2005)

Open Mathematics

We classify the homogeneous nilpotent orbits in certain Lie color algebras and specialize the results to the setting of a real reductive dual pair. For any member of a dual pair, we prove the bijectivity of the two Kostant-Sekiguchi maps by straightforward argument. For a dual pair we determine the correspondence of the real orbits, the correspondence of the complex orbits and explain how these two relations behave under the Kostant-Sekiguchi maps. In particular we prove that for a dual pair in...

Dual vector fields ii: calculating the Jacobian

Philip Feinsilver, René Schott (2006)

Banach Center Publications

Given a Lie algebra with a chosen basis, the change of coordinates relating coordinates of the first and second kinds near the identity of the corresponding local group yields some remarkable vector fields and dual vector fields. One family of vector fields is dual to a representation of the Lie algebra acting on a Fock-type space. To this representation an abelian family of dual vector fields is associated. The exponential of these commuting operators acting on an appropriate vacuum yields the...

Effacement et déformation

Gérard Rauch (1972)

Annales de l'institut Fourier

Soit k un corps de caractéristique zéro. La variété des algèbres de Lie sur k n’est pas réduite en général. Si L est une algèbre de Lie dimension finie sur k l’application quadratique S q : H 2 ( L , L ) H 3 ( L , L ) se factorise à travers le sous-espace des trois-classes de cohomologie effaçables.

Entwining Yang-Baxter maps and integrable lattices

Theodoros E. Kouloukas, Vassilios G. Papageorgiou (2011)

Banach Center Publications

Yang-Baxter (YB) map systems (or set-theoretic analogs of entwining YB structures) are presented. They admit zero curvature representations with spectral parameter depended Lax triples L₁, L₂, L₃ derived from symplectic leaves of 2 × 2 binomial matrices equipped with the Sklyanin bracket. A unique factorization condition of the Lax triple implies a 3-dimensional compatibility property of these maps. In case L₁ = L₂ = L₃ this property yields the set-theoretic quantum Yang-Baxter equation, i.e. the...

Currently displaying 401 – 420 of 1861