Dimension homologique de modules simples
Using principles of quantum symmetries we derive the algebraic part of the real spectral triple data for the standard Podleś quantum sphere: equivariant representation, chiral grading γ, reality structure J and the Dirac operator D, which has bounded commutators with the elements of the algebra and satisfies the first order condition.
The purpose of this paper is to establish a connection between various objects such as dynamical -matrices, Lie bialgebroids, and Lagrangian subalgebras. Our method relies on the theory of Dirac structures and Courant algebroids. In particular, we give a new method of classifying dynamical -matrices of simple Lie algebras , and prove that dynamical -matrices are in one-one correspondence with certain Lagrangian subalgebras of .
The main goal of this paper is to show an application of Graph Theory to classifying Lie algebras over finite fields. It is rooted in the representation of each Lie algebra by a certain pseudo-graph. As partial results, it is deduced that there exist, up to isomorphism, four, six, fourteen and thirty-four -, -, -, and -dimensional algebras of the studied family, respectively, over the field . Over , eight and twenty-two - and -dimensional Lie algebras, respectively, are also found. Finally,...
Our purpose is to generalize the dispersive inequalities for the wave equation on the Heisenberg group, obtained in [1], to H-type groups. On those groups we get optimal time decay for solutions to the wave equation (decay as ) and the Schrödinger equation (decay as ), p being the dimension of the center of the group. As a corollary, we obtain the corresponding Strichartz inequalities for the wave equation, and, assuming that p > 1, for the Schrödinger equation.
We define the divergence operators on a graded algebra, and we show that, given an odd Poisson bracket on the algebra, the operator that maps an element to the divergence of the hamiltonian derivation that it defines is a generator of the bracket. This is the “odd laplacian”, , of Batalin-Vilkovisky quantization. We then study the generators of odd Poisson brackets on supermanifolds, where divergences of graded vector fields can be defined either in terms of berezinian volumes or of graded connections. Examples...
Let be a finitary hereditary abelian category. We give a Hall algebra presentation of Kashaev’s theorem on the relation between Drinfeld double and Heisenberg double. As applications, we obtain realizations of the Drinfeld double Hall algebra of via its derived Hall algebra and Bridgeland’s Hall algebra of -cyclic complexes.
In this paper we construct on truncated current Lie algebras integrable hierarchies of partial differential equations, which generalize the Drinfeld-Sokolov hierarchies defined on Kac-Moody Lie algebras.
We classify the homogeneous nilpotent orbits in certain Lie color algebras and specialize the results to the setting of a real reductive dual pair. For any member of a dual pair, we prove the bijectivity of the two Kostant-Sekiguchi maps by straightforward argument. For a dual pair we determine the correspondence of the real orbits, the correspondence of the complex orbits and explain how these two relations behave under the Kostant-Sekiguchi maps. In particular we prove that for a dual pair in...
Given a Lie algebra with a chosen basis, the change of coordinates relating coordinates of the first and second kinds near the identity of the corresponding local group yields some remarkable vector fields and dual vector fields. One family of vector fields is dual to a representation of the Lie algebra acting on a Fock-type space. To this representation an abelian family of dual vector fields is associated. The exponential of these commuting operators acting on an appropriate vacuum yields the...