Displaying 61 – 80 of 399

Showing per page

Cluster categories for algebras of global dimension 2 and quivers with potential

Claire Amiot (2009)

Annales de l’institut Fourier

Let k be a field and A a finite-dimensional k -algebra of global dimension 2 . We construct a triangulated category 𝒞 A associated to A which, if  A is hereditary, is triangle equivalent to the cluster category of A . When 𝒞 A is Hom-finite, we prove that it is 2-CY and endowed with a canonical cluster-tilting object. This new class of categories contains some of the stable categories of modules over a preprojective algebra studied by Geiss-Leclerc-Schröer and by Buan-Iyama-Reiten-Scott. Our results also...

Cluster characters for 2-Calabi–Yau triangulated categories

Yann Palu (2008)

Annales de l’institut Fourier

Starting from an arbitrary cluster-tilting object T in a 2-Calabi–Yau triangulated category over an algebraically closed field, as in the setting of Keller and Reiten, we define, for each object L , a fraction X ( T , L ) using a formula proposed by Caldero and Keller. We show that the map taking L to X ( T , L ) is a cluster character, i.e. that it satisfies a certain multiplication formula. We deduce that it induces a bijection, in the finite and the acyclic case, between the indecomposable rigid objects of the cluster...

Coherent functors in stable homotopy theory

Henning Krause (2002)

Fundamenta Mathematicae

Coherent functors 𝓢 → Ab from a compactly generated triangulated category into the category of abelian groups are studied. This is inspired by Auslander's classical analysis of coherent functors from a fixed abelian category into abelian groups. We characterize coherent functors and their filtered colimits in various ways. In addition, we investigate certain subcategories of 𝓢 which arise from families of coherent functors.

Compact corigid objects in triangulated categories and co-t-structures

David Pauksztello (2008)

Open Mathematics

In the work of Hoshino, Kato and Miyachi, [11], the authors look at t-structures induced by a compact object, C , of a triangulated category, 𝒯 , which is rigid in the sense of Iyama and Yoshino, [12]. Hoshino, Kato and Miyachi show that such an object yields a non-degenerate t-structure on 𝒯 whose heart is equivalent to Mod(End( C )op). Rigid objects in a triangulated category can the thought of as behaving like chain differential graded algebras (DGAs). Analogously, looking at objects which behave...

Composition of preradicals

Ladislav Bican, Pavel Jambor, Tomáš Kepka, Petr Němec (1974)

Commentationes Mathematicae Universitatis Carolinae

Costable rings

Tomáš Kepka (1974)

Commentationes Mathematicae Universitatis Carolinae

Decompositions of the category of noncommutative sets and Hochschild and cyclic homology

Jolanta Słomińska (2003)

Open Mathematics

In this note we show that the main results of the paper [PR] can be obtained as consequences of more general results concerning categories whose morphisms can be uniquely presented as compositions of morphisms of their two subcategories with the same objects. First we will prove these general results and then we will apply it to the case of finite noncommutative sets.

Currently displaying 61 – 80 of 399