Semidirect products of categorical groups. Obstruction theory.
We define and investigate separable K-linear categories. We show that such a category C is locally finite and that every left C-module is projective. We apply our main results to characterize separable linear categories that are spanned by groupoids or delta categories.
We propose a new realization, using Harish-Chandra bimodules, of the Serre functor for the BGG category associated to a semi-simple complex finite dimensional Lie algebra. We further show that our realization carries over to classical Lie superalgebras in many cases. Along the way we prove that category and its parabolic generalizations for classical Lie superalgebras are categories with full projective functors. As an application we prove that in many cases the endomorphism algebra of the basic...