Displaying 281 – 300 of 10155

Showing per page

A new characterization of Suzuki groups

Behnam Ebrahimzadeh, Reza Mohammadyari (2019)

Archivum Mathematicum

One of the important questions that remains after the classification of the finite simple groups is how to recognize a simple group via specific properties. For example, authors have been able to use graphs associated to element orders and to number of elements with specific orders to determine simple groups up to isomorphism. In this paper, we prove that Suzuki groups S z ( q ) , where q ± 2 q + 1 is a prime number can be uniquely determined by the order of group and the number of elements with the same order.

A new characterization of symmetric group by NSE

Azam Babai, Zeinab Akhlaghi (2017)

Czechoslovak Mathematical Journal

Let G be a group and ω ( G ) be the set of element orders of G . Let k ω ( G ) and m k ( G ) be the number of elements of order k in G . Let nse ( G ) = { m k ( G ) : k ω ( G ) } . Assume r is a prime number and let G be a group such that nse ( G ) = nse ( S r ) , where S r is the symmetric group of degree r . In this paper we prove that G S r , if r divides the order of G and r 2 does not divide it. To get the conclusion we make use of some well-known results on the prime graphs of finite simple groups and their components.

A new efficient presentation for P S L ( 2 , 5 ) and the structure of the groups G ( 3 , m , n )

Bilal Vatansever, David M. Gill, Nuran Eren (2000)

Czechoslovak Mathematical Journal

G ( 3 , m , n ) is the group presented by a , b a 5 = ( a b ) 2 = b m + 3 a - n b m a - n = 1 . In this paper, we study the structure of G ( 3 , m , n ) . We also give a new efficient presentation for the Projective Special Linear group P S L ( 2 , 5 ) and in particular we prove that P S L ( 2 , 5 ) is isomorphic to G ( 3 , m , n ) under certain conditions.

A nilpotency condition for finitely generated soluble groups

Costantino Delizia (1998)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We prove that if k > 1 is an integer and G is a finitely generated soluble group such that every infinite set of elements of G contains a pair which generates a nilpotent subgroup of class at most k , then G is an extension of a finite group by a torsion-free k -Engel group. As a corollary, there exists an integer n , depending only on k and the derived length of G , such that G / Z n G is finite. For k < 4 , such n depends only on k .

Currently displaying 281 – 300 of 10155