Asymptotically tight bounds on subset sums
Le cadre de cet article est celui des groupes et des espaces hyperboliques de M. Gromov. Il est motivé par la question suivante : comment différencier deux groupes hyperboliques à quasi-isométrie près ? On illustre ce problème en détaillant un exemple de M. Gromov issu de Asymptotic invariants for infinite groups. On décrit une famille infinie de groupes hyperboliques, deux à deux non quasi-isométriques, de bord la courbe de Menger. La méthode consiste à étudier leur structure quasi-conforme au...
Let be a finite abelian group of odd order, be its generalized dihedral group, i.e., the semidirect product of acting on by inverting elements, where is the cyclic group of order two. Let be the Burnside ring of , be the augmentation ideal of . Denote by and the th power of and the th consecutive quotient group , respectively. This paper provides an explicit -basis for and determines the isomorphism class of for each positive integer .