On the cohomology of groups of p-length 1.
We define a measure of “complexity” of a braid which is natural with respect to both an algebraic and a geometric point of view. Algebraically, we modify the standard notion of the length of a braid by introducing generators , which are Garside-like half-twists involving strings through , and by counting powered generators as instead of simply . The geometrical complexity is some natural measure of the amount of distortion of the times punctured disk caused by a homeomorphism. Our main...
Let be a finite group. The prime graph of is a graph whose vertex set is the set of prime divisors of and two distinct primes and are joined by an edge, whenever contains an element of order . The prime graph of is denoted by . It is proved that some finite groups are uniquely determined by their prime graph. In this paper, we show that if is a finite group such that , where , then has a unique nonabelian composition factor isomorphic to or .
We study the compositum of all degree extensions of a number field in a fixed algebraic closure. We show contains all subextensions of degree less than if and only if . We prove that for there is no bound on the degree of elements required to generate finite subextensions of . Restricting to Galois subextensions, we prove such a bound does not exist under certain conditions on divisors of , but that one can take when is prime. This question was inspired by work of Bombieri and...
Let be the -th ordered configuration space of all distinct points in the Grassmannian of -dimensional subspaces of , whose sum is a subspace of dimension . We prove that is (when non empty) a complex submanifold of of dimension and its fundamental group is trivial if , and and equal to the braid group of the sphere
In this article we study the Ahlfors regular conformal gauge of a compact metric space , and its conformal dimension . Using a sequence of finite coverings of , we construct distances in its Ahlfors regular conformal gauge of controlled Hausdorff dimension. We obtain in this way a combinatorial description, up to bi-Lipschitz homeomorphisms, of all the metrics in the gauge. We show how to compute using the critical exponent associated to the combinatorial modulus.