Groupes à croissance polynomiale
Quelles sont les propriétés d’un groupe de présentation finie “tiré au hasard” ? La réponse à cette question dépend bien entendu de la méthode choisie pour le tirage au sort. On peut par exemple fixer générateurs et choisir relations aléatoirement parmi les mots de longueur , puis faire tendre vers l’infini. On peut aussi choisir un graphe fini, étiqueter aléatoirement ses arêtes par des générateurs, et considérer le groupe engendré par ces générateurs, soumis aux relations lues sur les cycles...
Scriviamo ed . Cerchiamo gruppi con generatori tali che ed per alcuni numeri naturali , .
We show that there exists a finitely generated group of growth for all functions satisfying for all large enough and the positive root of . Set ; then all functions that grow uniformly faster than are realizable as the growth of a group.We also give a family of sum-contracting branched groups of growth for a dense set of .