-knots via the mapping class group of the twice punctured torus.
We describe unicorn paths in the arc graph and show that they form 1-slim triangles and are invariant under taking subpaths. We deduce that all arc graphs are 7-hyperbolic. Considering the same paths in the arc and curve graph, this also shows that all curve graphs are 17-hyperbolic, including closed surfaces.
2010 Mathematics Subject Classification: 20F05, 20D06.We prove that the group PSL6(q) is (2,3)-generated for any q. In fact, we provide explicit generators x and y of orders 2 and 3, respectively, for the group SL6(q).
In [1], Jakubík showed that the class of -interpolation lattice-ordered groups forms a radical class, but left open the question of whether the class forms a torsion class. In this paper, we show that this class does indeed form a torsion class.