Representations of cyclically ordered groups
For each integer and each finite graph , we construct a Coxeter group and a non positively curved polygonal complex on which acts properly cocompactly, such that each polygon of has edges, and the link of each vertex of is isomorphic to . If is a “generalized -gon”, then is a Tits building modelled on a reflection group of the hyperbolic plane. We give a condition on for to be non enumerable (which is satisfied if is a thick classical generalized -gon). On the other hand,...
Let G be a finitely generated group. We give a new characterization of its Bieri-Neumann-Strebel invariant Σ(G), in terms of geometric abelian actions on R-trees. We provide a proof of Brown's characterization of Σ(G) by exceptional abelian actions of G, using geometric methods.
The aim of this short survey is to give a quick introduction to the Salvetti complex as a tool for the study of the cohomology of Artin groups. In particular we show how a spectral sequence induced by a filtration on the complex provides a very natural and useful method to study recursively the cohomology of Artin groups, simplifying many computations. In the last section some examples of applications are presented.