Decomposition of isometries of isotropic over finite fields into simple isometries
Let be a regular prehomogeneous vector space (abbreviated to ), where is a reductive algebraic group over . If is a decomposition of into irreducible representations, then, in general, the PV’s are no longer regular. In this paper we introduce the notion of quasi-irreducible (abbreviated to -irreducible), and show first that for completely -reducible ’s, the -isotypic components are intrinsically defined, as in ordinary representation theory. We also show that, in an appropriate...
Using Deodhar’s decomposition of a double Schubert cell, we study the regular representations of finite groups of Lie type arising in the cohomology of Deligne-Lusztig varieties associated to tori. We deduce that the Deligne-Lusztig restriction of a Gelfand-Graev module is a shifted Gelfand-Graev module.
The notion of designs in Grassmannian spaces was introduced by the author and R. Coulangeon, G. Nebe, in [3]. After having recalled some basic properties of these objects and the connections with the theory of lattices, we prove that the sequence of Barnes-Wall lattices hold -Grassmannian designs. We also discuss the connections between the notion of Grassmannian design and the notion of design associated with the symmetric space of the totally isotropic subspaces in a binary quadratic space, which...