Displaying 161 – 180 of 1248

Showing per page

Combinatorial and group-theoretic compactifications of buildings

Pierre-Emmanuel Caprace, Jean Lécureux (2011)

Annales de l’institut Fourier

Let X be a building of arbitrary type. A compactification 𝒞 sph ( X ) of the set Res sph ( X ) of spherical residues of X is introduced. We prove that it coincides with the horofunction compactification of Res sph ( X ) endowed with a natural combinatorial distance which we call the root-distance. Points of 𝒞 sph ( X ) admit amenable stabilisers in Aut ( X ) and conversely, any amenable subgroup virtually fixes a point in 𝒞 sph ( X ) . In addition, it is shown that, provided Aut ( X ) is transitive enough, this compactification also coincides with the group-theoretic...

Combinatorial differential geometry and ideal Bianchi–Ricci identities II – the torsion case

Josef Janyška, Martin Markl (2012)

Archivum Mathematicum

This paper is a continuation of [2], dealing with a general, not-necessarily torsion-free, connection. It characterizes all possible systems of generators for vector-field valued operators that depend naturally on a set of vector fields and a linear connection, describes the size of the space of such operators and proves the existence of an ‘ideal’ basis consisting of operators with given leading terms which satisfy the (generalized) Bianchi–Ricci identities without corrections.

Compactification des variétés de Deligne-Lusztig

Cédric Bonnafé, Raphaël Rouquier (2009)

Annales de l’institut Fourier

Nous construisons explicitement la normalisation de la compactification de Bott-Samelson-Demazure-Hansen des variétés de Deligne-Lusztig X ( w ) dans leur revêtement Y ( w ) et retrouvons ainsi un résultat de Deligne-Lusztig sur la monodromie locale autour des diviseurs de la compactification.

Compactification via le spectre réel d’espaces des classes de représentation dans SO ( n , 1 )

Taoufik Bouzoubaa (1994)

Annales de l'institut Fourier

Soit Γ un groupe de type fini non élémentaire. On note D n ( Γ ) l’ensemble des structures hyperboliques de dimension n sur Γ . D n ( Γ ) peut se réaliser comme fermé dans un espace semi-algébrique qui admet une compactification naturelle par le spectre réel. On note D n ( Γ ) sp le compactifié via le spectre _ réel de D n ( Γ ) . L’objet de cet article est de décrire les points ajoutés dans D n ( Γ ) sp . La compactification obtenue de cette manière permet d’interpréter “les points frontières” comme des représentations de Γ dans SO F + ( n , 1 ) F ( ) est un corps réel...

Comparaison des homologies du groupe linéaire et de son algèbre de Lie

Jean-Louis Loday (1987)

Annales de l'institut Fourier

Pour un anneau local R l’homologie du groupe discret G L n ( R ) a un comportement tout à fait analogue à l’homologie de l’algèbre de Lie g l n ( A ) lorsque A est une algèbre associative sur un corps de caractéristique zéro. L’objet de cet article est de faire une synthèse (sans démonstration) des résultats connus sur ces groupes d’homologie en exhibant leurs liens avec la K -théorie algébrique, l’homologie cyclique et la cohomologie motivique. On y pose un certain nombre de questions et on propose une définition pour...

Complète réductibilité

Jean-Pierre Serre (2003/2004)

Séminaire Bourbaki

La notion de complète réductibilité d’une représentation linéaire Γ 𝐆𝐋 n peut se définir en termes de l’action de Γ sur l’immeuble de Tits de 𝐆𝐋 n . Cela suggère une notion analogue pour tous les immeubles sphériques, et donc aussi pour tous les groupes réductifs. On verra comment cette notion se traduit en termes topologiques et quelles applications on peut en tirer.

Currently displaying 161 – 180 of 1248