-sequences in abelian groups.
Our goal in this paper is to make an attempt to find the largest Lie algebra of vector fields on the indicatrix such that all its elements are tangent to the holonomy group of a Finsler manifold. First, we introduce the notion of the curvature algebra, generated by curvature vector fields, then we define the infinitesimal holonomy algebra by the smallest Lie algebra of vector fields on an indicatrix, containing the curvature vector fields and their horizontal covariant derivatives with respect to...
Let be a semisimple algebraic Lie group and a reductive subgroup. We find geometrically the best even integer for which the representation of in is almost . As an application, we give a criterion which detects whether this representation is tempered.
In this paper we obtain Lp versions of the classical theorems of induced representations, namely, the inducing in stages theorem, the Kronecker product theorem, the Frobenius Reciprocity theorem and the subgroup theorem. In doing so we adopt the tensor product approach of Rieffel to inducing.
We show by example that the associative law does not hold for tensor products in the category of general (not necessarily locally convex) topological vector spaces. The same pathology occurs for tensor products of Hausdorff abelian topological groups.
We show that the Lorentz and the SU(3) groups can be derived from the covariance principle conserving a Z₃-graded three-form on a Z₃-graded cubic algebra representing quarks endowed with non-standard commutation laws. The ternary commutation relations on an algebra generated by two elements lead to cubic combinations of three quarks or antiquarks that transform as Lorentz spinors, and binary quark-anti-quark combinations that transform as Lorentz vectors.