Loading [MathJax]/extensions/MathZoom.js
- Subjects
- 22-XX Topological groups, Lie groups
Displaying 21 –
40 of
154
Le but de ce travail est de donner une description globale du caractère des
représentations unitaires irréductibles d’un groupe presque algèbrique réel, construites
par M. Duflo dans le cadre de la méthode des orbites. Pour ce faire, nous démontrons sous
certaines conditions une formule de localisation permettant d’exprimer le caractère d’une
représentation associée à l’orbite coadjointe au voisinage d’un élément
elliptique en terme de la transformée de Fourier de la mesure de Liouville sur
l’ensemble...
On étudie la représentation coadjointe de certains produits semi-directs (où est un espace de matrices où opère) et plus particulièrement celle du groupe affine. Dans ce dernier cas, on donne un calcul explicite de l’inverse d’une application orbitale (correspondant à un point dont le stabilisateur est trivial). Ceci permet de résoudre diverses questions de la théorie des invariants relatives au groupe affine et à certains de ses sous-groupes. Par exemple, on a déterminé par une méthode géométrique...
Partant de la représentation de l’algèbre de Lie du groupe (nilpotent, connexe et simplement connexe) par des opérateurs différentiels rationnels dont l’existence est liée à la conjecture de Gelfand et Kirillov et démontrée dans Nghiêm Xuân Hai (Ann. Inst. Fourier, 33-4 (1983), 95–133), on calcule explicitement la transformation de Fourier-Plancherel de . En particulier, on obtient la mesure de Plancherel comme une mesure à densité sur un ouvert de Zariski du spectre antihermitien du centre...
Dans l’algèbre enveloppante d’une algèbre de Lie résoluble, on construit un anneau de Weyl caractéristique, canonique et maximal. On peut alors représenter algébriquement l’algèbre de Lie comme des dérivations de cet anneau de Weyl à condition d’effacer un 2-cocycle canonique d’obstruction. Lorsque l’on utilise la représentation de Schrödinger de l’anneau de Weyl, on peut introduire une primitive analytique du 2-cocycle et obtenir une représentation de l’algèbre de Lie par des opérateurs différentiels...
We prove that every nonmetrizable compact connected Abelian group G has a family H of size |G|, the maximal size possible, consisting of proper dense pseudocompact subgroups of G such that H ∩ H'={0} for distinct H,H' ∈ H. An easy example shows that connectedness of G is essential in the above result. In the general case we establish that every nonmetrizable compact Abelian group G has a family H of size |G| consisting of proper dense pseudocompact subgroups of G such that each intersection H H'...
We introduce various notions of large-scale isoperimetric profile on a locally compact, compactly generated amenable group. These asymptotic quantities provide measurements of the degree of amenability of the group. We are particularly interested in a class of groups with exponential volume growth which are the most amenable possible in that sense. We show that these groups share various interesting properties such as the speed of on-diagonal decay of random walks, the vanishing of the reduced first...
Currently displaying 21 –
40 of
154