Backward stochastic differential equations in a Lie group
For any connected Lie group G and any Laplacian Λ = X²₁ + ⋯ + X²ₙ ∈ 𝔘𝔤 (X₁,...,Xₙ being a basis of 𝔤) one can define the commutant 𝔅 = 𝔅(Λ) of Λ in the convolution algebra ℒ¹(G) as well as the commutant ℭ(Λ) in the group C*-algebra C*(G). Both are involutive Banach algebras. We study these algebras in the case of a "distinguished Laplacian" on the "Iwasawa part AN" of a semisimple Lie group. One obtains a fairly good description of these algebras by objects derived from the semisimple group....
Let be an unramified group over a -adic field. This article introduces a base change homomorphism for Bernstein centers of depth-zero principal series blocks for and proves the corresponding base change fundamental lemma. This result is used in the approach to Shimura varieties with -level structure initiated by M. Rapoport and the author in [15].
Let be a Hermitian symmetric space of the non-compact type and let be a discrete series representation of which is holomorphically induced from a unitary irreducible representation of . In the paper [B. Cahen, Berezin quantization for holomorphic discrete series representations: the non-scalar case, Beiträge Algebra Geom., DOI 10.1007/s13366-011-0066-2], we have introduced a notion of complex-valued Berezin symbol for an operator acting on the space of . Here we study the corresponding...
We construct adapted Weyl correspondences for the unitary irreducible representations of the Cartan motion group of a noncompact semisimple Lie group by using the method introduced in [B. Cahen, Weyl quantization for semidirect products, Differential Geom. Appl. 25 (2007), 177--190].
We prove an algebra property under pointwise multiplication for Besov spaces defined on Lie groups of polynomial growth. When the setting is restricted to H-type groups, this algebra property is generalized to paraproduct estimates.
In the paper we investigate the absolute convergence in the sup-norm of Harish-Chandra's Fourier series of functions belonging to Besov spaces defined on non-compact connected Lie groups.