Rectifiability and perimeter in step 2 groups
Soit une distribution dissipative sur un groupe de Lie et soit une représentation fortement continue de dans un espace de Banach. Supposons à support compact. Il y a deux façons évidentes de définir un opérateur fermé : une faible et une forte. Le résultat principal de cet article est que l’on obtient le même résultat et que engendre un semi-groupe fortement continu d’opérateurs.
Let be a metric space, equipped with a Borel measure satisfying suitable compatibility conditions. An amalgam is a space which looks locally like but globally like . We consider the case where the measure of the ball with centre and radius behaves like a polynomial in , and consider the mapping properties between amalgams of kernel operators where the kernel behaves like when and like when . As an application, we describe Hardy–Littlewood–Sobolev type regularity theorems...
Let be the Heisenberg group of dimension . Let be the partial sub-Laplacians on and the central element of the Lie algebra of . We prove that the kernel of the operator is in the Schwartz space if . We prove also that the kernel of the operator is in if and that the kernel of the operator is in if . Here is the Kohn-Laplacian on .
Using the exact representation of Carnot-Carathéodory balls in the Heisenberg group, we prove that: 1. in the classical sense for all with , where is the distance from the origin; 2. Metric balls are not optimal isoperimetric sets in the Heisenberg group.
We obtain some matrix elements of basis transformations in a representation space of the unimodular pseudo-orthogonal group. Using these elements, we derive some formulas for special functions.
On étudie diverses convergences des sommes de Riesz des fonctions de puissance pième sommable sur un groupe de Lie compact. On montre que , où est la dimension du groupe, est un indice critique pour la classe . On donne également un théorème de multiplicateurs qui redonne le résultat classique de Marcinkiewicz pour le tore. On établit enfin un lien entre les multiplicateurs des groupes de Lie compacts et certains multiplicateurs de .