A Spectral Paley-Wiener Theorem.
We prove a spectral Paley-Wiener theorem for the Heisenberg group by means of a support theorem for the twisted spherical means on If is a Schwartz class function we show that is supported in a ball of radius in if and only if for for all This is an analogue of Helgason’s support theorem on Euclidean and hyperbolic spaces. When we show that the two conditions for imply a support theorem for a large class of functions with exponential growth. Surprisingly enough,this latter...
It is well known that (U(p,q),Hₙ) is a generalized Gelfand pair. Applying the associated spectral analysis, we prove a theorem of Wiener Tauberian type for the reduced Heisenberg group, which generalizes a known result for the case p = n, q = 0.
Let N be a simply connected, connected non-commutative nilpotent Lie group with Lie algebra of dimension n. Let H be a subgroup of the automorphism group of N. Assume that H is a commutative, simply connected, connected Lie group with Lie algebra . Furthermore, assume that the linear adjoint action of on is diagonalizable with non-purely imaginary eigenvalues. Let . We obtain an explicit direct integral decomposition for τ, including a description of the spectrum as a submanifold of (+)*, and a...
We define partial spectral integrals on the Heisenberg group by means of localizations to isotropic or anisotropic dilates of suitable star-shaped subsets V containing the joint spectrum of the partial sub-Laplacians and the central derivative. Under the assumption that an L²-function f lies in the logarithmic Sobolev space given by , where is a suitable “generalized” sub-Laplacian associated to the dilation structure, we show that converges a.e. to f(x) as R → ∞.
Let be a right-invariant sub-Laplacian on a connected Lie group and let denote the associated “spherical partial sums,” where is the spectral resolution of We prove that converges a.e. to as under the assumption
We study the problem of -boundedness () of operators of the form for a commuting system of self-adjoint left-invariant differential operators on a Lie group of polynomial growth, which generate an algebra containing a weighted subcoercive operator. In particular, when is a homogeneous group and are homogeneous, we prove analogues of the Mihlin-Hörmander and Marcinkiewicz multiplier theorems.