The Capelli identity and unitary representations
For the dual pair considered, the Cauchy Harish-Chandra Integral, as a distribution on the Lie algebra, is the limit of the holomorphic extension of the reciprocal of the determinant. We compute that limit explicitly in terms of the Harish-Chandra orbital integrals.
We describe explicitly the group of transverse diffeomorphisms of several types of minimal linear foliations on the torus , . We show in particular that non-quadratic foliations are rigid, in the sense that their only transverse diffeomorphisms are and translations. The description derives from a general formula valid for the group of transverse diffeomorphisms of any minimal Lie foliation on a compact manifold. Our results generalize those of P. Donato and P. Iglesias for , P. Iglesias and...