Displaying 41 – 60 of 65

Showing per page

Global Parametrization of Scalar Holomorphic Coadjoint Orbits of a Quasi-Hermitian Lie Group

Benjamin Cahen (2013)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Let G be a quasi-Hermitian Lie group with Lie algebra 𝔤 and K be a compactly embedded subgroup of G . Let ξ 0 be a regular element of 𝔤 * which is fixed by K . We give an explicit G -equivariant diffeomorphism from a complex domain onto the coadjoint orbit 𝒪 ( ξ 0 ) of ξ 0 . This generalizes a result of [B. Cahen, Berezin quantization and holomorphic representations, Rend. Sem. Mat. Univ. Padova, to appear] concerning the case where 𝒪 ( ξ 0 ) is associated with a unitary irreducible representation of G which is holomorphically...

Global S L ( 2 , R ) ˜ representations of the Schrödinger equation with singular potential

Jose Franco (2012)

Open Mathematics

We study the representation theory of the solution space of the one-dimensional Schrödinger equation with singular potential V λ(x) = λx −2 as a representation of S L ( 2 , ) ˜ . The subspace of solutions for which the action globalizes is constructed via nonstandard induction outside the semisimple category. By studying the subspace of K-finite vectors in this space, a distinguished family of potentials, parametrized by the triangular numbers is shown to generate a global representation of S L ( 2 , ) ˜ ⋉ H 3, where H...

Globality in semisimple Lie groups

Karl-Hermann Neeb (1990)

Annales de l'institut Fourier

In the first section of this paper we give a characterization of those closed convex cones (wedges) W in the Lie algebra s l ( 2 , R ) n which are invariant under the maximal compact subgroup of the adjoint group and which are controllable in the associated simply connected Lie group S l ( 2 , R ) n , i.e., for which the subsemigroup S = ( exp W ) generated by the exponential image of W agrees with the whole group G (Theorem 13). In Section 2 we develop some algebraic tools concerning real root decompositions with respect to compactly...

Groupes de Ping-Pong et comptage

Xavier Thirion (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Dans cet article, nous étudions les propriétés asymptotiques d’une large classe de sous-groupe discrets du groupe linéaire réel : les groupes de Ping-Pong. Nous décrivons leur action sur l’espace projectif réel et le comportement à l’infini de leur fonction de comptage.

Groupes de Schottky et comptage

Jean-François Quint (2005)

Annales de l’institut Fourier

Soient X un espace symétrique de type non compact et Γ un groupe discret d’isométries de X du type de Schottky. Dans cet article, nous donnons des équivalents des fonctions orbitales de comptage pour l’action de Γ sur X .

Groups of C r , s -diffeomorphisms related to a foliation

Jacek Lech, Tomasz Rybicki (2007)

Banach Center Publications

The notion of a C r , s -diffeomorphism related to a foliation is introduced. A perfectness theorem for the group of C r , s -diffeomorphisms is proved. A remark on C n + 1 -diffeomorphisms is given.

Currently displaying 41 – 60 of 65