Previous Page 6

Displaying 101 – 113 of 113

Showing per page

Locally analytic vectors of unitary principal series of  GL 2 ( p )

Ruochuan Liu, Bingyong Xie, Yuancao Zhang (2012)

Annales scientifiques de l'École Normale Supérieure

The p -adic local Langlands correspondence for  GL 2 ( p ) attaches to any 2 -dimensional irreducible p -adic representation V of  G p an admissible unitary representation Π ( V ) of  GL 2 ( p ) . The unitary principal series of  GL 2 ( p ) are those Π ( V ) corresponding to trianguline representations. In this article, for  p > 2 , using the machinery of Colmez, we determine the space of locally analytic vectors Π ( V ) an for all non-exceptional unitary principal series Π ( V ) of  GL 2 ( p ) by proving a conjecture of Emerton.

Lp multipliers and their H1-L1 estimates on the Heisenberg group.

Chin-Cheng Lin (1995)

Revista Matemática Iberoamericana

We give a Hörmander-type sufficient condition on an operator-valued function M that implies the Lp-boundedness result for the operator TM defined by (TMf)^ = Mf^ on the (2n + 1)-dimensional Heisenberg group Hn. Here ^ denotes the Fourier transform on Hn defined in terms of the Fock representations. We also show the H1-L1 boundedness of TM, ||TMf||L1 ≤ C||f||H1, for Hn under the same hypotheses of Lp-boundedness.

Lp-estimates for the wave equation on the Heisenberg group.

Detlef Müller, Elias M. Stein (1999)

Revista Matemática Iberoamericana

Let £ denote the sub-Laplacian on the Heisenberg group Hm. We prove that ei√£ / (1 - £)α/2 extends to a bounded operator on Lp(Hm), for 1 ≤ p ≤ ∞, when α > (d - 1) |1/p - 1/2|.

Lyapunov exponents for stochastic differential equations on semi-simple Lie groups

Paulo R. C. Ruffino, Luiz A. B. San Martin (2001)

Archivum Mathematicum

With an intrinsic approach on semi-simple Lie groups we find a Furstenberg–Khasminskii type formula for the limit of the diagonal component in the Iwasawa decomposition. It is an integral formula with respect to the invariant measure in the maximal flag manifold of the group (i.e. the Furstenberg boundary B = G / M A N ). Its integrand involves the Borel type Riemannian metric in the flag manifolds. When applied to linear stochastic systems which generate a semi-simple group the formula provides a diagonal matrix...

Currently displaying 101 – 113 of 113

Previous Page 6