Displaying 141 – 160 of 260

Showing per page

Action d'une forme réelle d'un groupe de Lie complexe sur les fonctions plurisousharmoniques

Jean-Jacques Loeb (1985)

Annales de l'institut Fourier

Soit G C un groupe de Lie complexe et G R une forme réelle fermée de G C . Un couple ( G C , G R ) est dit pseudo-convexe, s’il existe sur G C une fonction régulière, strictement p.s.h., invariante par l’action de G R et d’exhaustion sur G C / G R . On dit que G R est à spectre imaginaire pur, si pour tout X de Lie ( G R ) , les valeurs propres de ad X sont imaginaires pures. Pour G C à radical simplement connexe, cette dernière propriété équivaut à la pseudo-convexité de ( G C , G R ) . Pour ( G C , G R ) pseudo-convexe et sous une hypothèse de sous-groupe discret,...

Addendum to: On volumes of arithmetic quotients of SO (1, n)

Mikhail Belolipetsky (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

There are errors in the proof of uniqueness of arithmetic subgroups of the smallest covolume. In this note we correct the proof, obtain certain results which were stated as a conjecture, and we give several remarks on further developments.

Adjoint representation of E 8 and del Pezzo surfaces of degree 1

Vera V. Serganova, Alexei N. Skorobogatov (2011)

Annales de l’institut Fourier

Let X be a del Pezzo surface of degree 1 , and let G be the simple Lie group of type E 8 . We construct a locally closed embedding of a universal torsor over X into the G -orbit of the highest weight vector of the adjoint representation. This embedding is equivariant with respect to the action of the Néron-Severi torus T of X identified with a maximal torus of G extended by the group of scalars. Moreover, the T -invariant hyperplane sections of the torsor defined by the roots of G are the inverse images...

Admissibility for quasiregular representations of exponential solvable Lie groups

Vignon Oussa (2013)

Colloquium Mathematicae

Let N be a simply connected, connected non-commutative nilpotent Lie group with Lie algebra of dimension n. Let H be a subgroup of the automorphism group of N. Assume that H is a commutative, simply connected, connected Lie group with Lie algebra . Furthermore, assume that the linear adjoint action of on is diagonalizable with non-purely imaginary eigenvalues. Let τ = I n d H N H 1 . We obtain an explicit direct integral decomposition for τ, including a description of the spectrum as a submanifold of (+)*, and a...

A.e. convergence of anisotropic partial Fourier integrals on Euclidean spaces and Heisenberg groups

D. Müller, E. Prestini (2010)

Colloquium Mathematicae

We define partial spectral integrals S R on the Heisenberg group by means of localizations to isotropic or anisotropic dilates of suitable star-shaped subsets V containing the joint spectrum of the partial sub-Laplacians and the central derivative. Under the assumption that an L²-function f lies in the logarithmic Sobolev space given by l o g ( 2 + L α ) f L ² , where L α is a suitable “generalized” sub-Laplacian associated to the dilation structure, we show that S R f ( x ) converges a.e. to f(x) as R → ∞.

A.e. convergence of spectral sums on Lie groups

Christopher Meaney, Detlef Müller, Elena Prestini (2007)

Annales de l’institut Fourier

Let be a right-invariant sub-Laplacian on a connected Lie group G , and let S R f : = 0 R d E λ f , R 0 , denote the associated “spherical partial sums,” where = 0 λ d E λ is the spectral resolution of . We prove that S R f ( x ) converges a.e. to f ( x ) as R under the assumption log ( 2 + ) f L 2 ( G ) .

Currently displaying 141 – 160 of 260