Eine allgemeine logarithmische Ungleichung.
When a real-valued function of one variable is approximated by its th degree Taylor polynomial, the remainder is estimated using the Alexiewicz and Lebesgue -norms in cases where or are Henstock-Kurzweil integrable. When the only assumption is that is Henstock-Kurzweil integrable then a modified form of the th degree Taylor polynomial is used. When the only assumption is that then the remainder is estimated by applying the Alexiewicz norm to Schwartz distributions of order 1.
Let be a closed set, a positive integer and a function defined on so that the -th Peano derivative relative to exists. The major result of this paper is that if has finite Denjoy index, then has an extension, , to which is times Peano differentiable on with on for .
The paper treats functions which are defined on closed subsets of [0,1] and which are k times Peano differentiable. A necessary and sufficient condition is given for the existence of a k times Peano differentiable extension of such a function to [0,1]. Several applications of the result are presented. In particular, functions defined on symmetric perfect sets are studied.
In the paper we give an analogue of the Filippov Lemma for the second order differential inclusions with the initial conditions y(0) = 0, y′(0) = 0, where the matrix A ∈ ℝd×d and multifunction is Lipschitz continuous in y with a t-independent constant l. The main result is the following: Assume that F is measurable in t and integrably bounded. Let y 0 ∈ W 2,1 be an arbitrary function fulfilling the above initial conditions and such that where p 0 ∈ L 1[0, 1]. Then there exists a solution y ∈ W 2,1...
We find conditions on a real function f:[a,b] → ℝ equivalent to being Lebesgue equivalent to an n-times differentiable function (n ≥ 2); a simple solution in the case n = 2 appeared in an earlier paper. For that purpose, we introduce the notions of and functions, which play analogous rôles for the nth order differentiability to the classical notion of a VBG⁎ function for the first order differentiability, and the classes and (introduced by Preiss and Laczkovich) for Cⁿ smoothness. As a consequence,...
Fix a polynomial Φ of the form Φ(α) = α + ∑2≤j≤m aj αk=1j with Φ'(1) gt; 0. We prove that the evolution, on the diffusive scale, of the empirical density of exclusion processes on , with conductances given by special class of functionsW, is described by the unique weak solution of the non-linear parabolic partial differential equation ∂tρ = ∑d ∂xk ∂Wk Φ(ρ). We also derive some properties of the operator ∑k=1d ...
We consider the exclusion process in the one-dimensional discrete torus with points, where all the bonds have conductance one, except a finite number of slow bonds, with conductance , with . We prove that the time evolution of the empirical density of particles, in the diffusive scaling, has a distinct behavior according to the range of the parameter . If , the hydrodynamic limit is given by the usual heat equation. If , it is given by a parabolic equation involving an operator , where ...
We start from the following problem: given a function what can be said about the set of points in the range where level sets are «big» according to an opportune definition. This yields the necessity of an analysis of the structure of level sets of functions. We investigate the analogous problem for functions. These are in a certain way intermediate between and functions. The results involve a mixture of Real Analysis, Geometric Measure Theory and Classical Descriptive Set Theory.