weakly chaotic functions with zero topological entropy and non- flat critical points.
MSC 2010: 49K05, 26A33We give a proper fractional extension of the classical calculus of variations. Necessary optimality conditions of Euler-Lagrange type for variational problems containing both classical and fractional derivatives are proved. The fundamental problem of the calculus of variations with mixed integer and fractional order derivatives as well as isoperimetric problems are considered.
It is proved (independently of the result of Holmes [Fund. Math. 140 (1992)]) that the dual space of the uniform closure of the linear span of the maps x ↦ d(x,a) - d(x,b), where d is the metric of the Urysohn space of diameter r, is (isometrically if r = +∞) isomorphic to the space of equivalence classes of all real-valued Lipschitz maps on . The space of all signed (real-valued) Borel measures on is isometrically embedded in the dual space of and it is shown that the image of the embedding...
Mathematics Subject Classification: 26A33, 74B20, 74D10, 74L15The popular elastic law of Fung that describes the non-linear stress- strain behavior of soft biological tissues is extended into a viscoelastic material model that incorporates fractional derivatives in the sense of Caputo. This one-dimensional material model is then transformed into a three-dimensional constitutive model that is suitable for general analysis. The model is derived in a configuration that differs from the current, or spatial,...
2000 Math. Subject Classification: 26A33; 33E12, 33E30, 44A15, 45J05The Caputo fractional derivative is one of the most used definitions of a fractional derivative along with the Riemann-Liouville and the Grünwald- Letnikov ones. Whereas the Riemann-Liouville definition of a fractional derivative is usually employed in mathematical texts and not so frequently in applications, and the Grünwald-Letnikov definition – for numerical approximation of both Caputo and Riemann-Liouville fractional derivatives,...
The ℑ-density topology on ℝ is a refinement of the natural topology. It is a category analogue of the density topology [9, 10]. This paper is concerned with ℑ-density continuous functions, i.e., the real functions that are continuous when the ℑ-densitytopology is used on the domain and the range. It is shown that the family of ordinary continuous functions f: [0,1]→ℝ which have at least one point of ℑ-density continuity is a first category subset of C([0,1])= f: [0,1]→ℝ: f is continuous equipped...
The paper is devoted to the study of the Cauchy problem for a nonlinear differential equation of complex order with the Caputo fractional derivative. The equivalence of this problem and a nonlinear Volterra integral equation in the space of continuously differentiable functions is established. On the basis of this result, the existence and uniqueness of the solution of the considered Cauchy problem is proved. The approximate-iterative method by Dzjadyk is used to obtain the approximate solution...
Let be an interval in and let be a real valued function defined at the endpoints of and with a certain number of discontinuities within . Assuming to be differentiable on a set to the derivative , where is a subset of at whose points can take values or not be defined at all, we adopt the convention that and are equal to at all points of and show that , where denotes the total value of the Kurzweil-Henstock integral. The paper ends with a few examples that illustrate...
2000 Mathematics Subject Classification: 35A15, 44A15, 26A33The paper is devoted to the study of the Cauchy-type problem for the differential equation [...] involving the Riemann-Liouville partial fractional derivative of order α > 0 [...] and the Laplace operator.
Mathematics Subject Classification: 26A33, 33E12, 33C20.It has been shown that the fractional integration and differentiation operators transform such functions with power multipliers into the functions of the same form. Some of the results given earlier by Kilbas and Saigo follow as special cases.
The main result is a Young-Stieltjes integral representation of the composition ϕ ∘ f of two functions f and ϕ such that for some α ∈ (0,1], ϕ has a derivative satisfying a Lipschitz condition of order α, and f has bounded p-variation for some p < 1 + α. If given α ∈ (0,1], the p-variation of f is bounded for some p < 2 + α, and ϕ has a second derivative satisfying a Lipschitz condition of order α, then a similar result holds with the Young-Stieltjes integral replaced by its extension.
We give a characterization of compact subsets of finite unions of disjoint finite-length curves in ℝⁿ with ω-continuous derivative and without self-intersections. Intuitively, our condition can be formulated as follows: there exists a finite set of regular curves covering a compact set K iff every triple of points of K behaves like a triple of points of a regular curve. This work was inspired by theorems by Jones, Okikiolu, Schul and others that characterize compact subsets of...