Displaying 261 – 280 of 2145

Showing per page

An operational Haar wavelet method for solving fractional Volterra integral equations

Habibollah Saeedi, Nasibeh Mollahasani, Mahmoud Mohseni Moghadam, Gennady N. Chuev (2011)

International Journal of Applied Mathematics and Computer Science

A Haar wavelet operational matrix is applied to fractional integration, which has not been undertaken before. The Haar wavelet approximating method is used to reduce the fractional Volterra and Abel integral equations to a system of algebraic equations. A global error bound is estimated and some numerical examples with smooth, nonsmooth, and singular solutions are considered to demonstrate the validity and applicability of the developed method.

Análisis de las singularidades de una ecuación diferencial fraccionaria no lineal.

Luis Vázquez (2005)

RACSAM

Se exponen las estimaciones numéricas preliminares de las singularidades de una ecuación diferencial fraccionaria no lineal. Dicha ecuación aparece en el estudio de las ondas viajeras asociadas a una ecuación de ondas que es una interpolación entre la ecuación de ondas clásica y la ecuación de Benjamin-Ono.

Analyse 2-microlocale et développementen série de chirps d'une fonction de Riemann et de ses généralisations

Daniel Boichu (1994)

Colloquium Mathematicae

En dimension 1 on analyse la fonction irrégulière r ( x ) = n = 1 n - p s i n ( n p x ) (p entier ≥ 2) en un point x 0 de dérivabilité (π est un tel point) et on démontre que le terme d’erreur est un chirp de classe (1 + 1/(2p-2), 1/(p-1), (p-1)/p). La fonction r(x) est dans l’espace 2-microlocal C x 0 s , s ' si et seulement si s+s’ ≤ 1 - 1/p et ps+s’≤ p - 1/2. En dimension 2, on obtient en (π,π) l’existence d’un plan tangent pour la surface z = m , n = 1 ( m 2 + n 2 ) - γ s i n ( m 2 x + n 2 y ) dès que γ>1.

Analyse de récession et résultats de stabilité d’une convergence variationnelle, application à la théorie de la dualité en programmation mathématique

Driss Mentagui (2003)

ESAIM: Control, Optimisation and Calculus of Variations

Soit X un espace de Banach de dual topologique X ' . 𝒞 X (resp. 𝒞 X ' ) désigne l’ensemble des parties non vides convexes fermées de X (resp. w * -fermées de X ' ) muni de la topologie de la convergence uniforme sur les bornés des fonctions distances. Cette topologie se réduit à celle de la métrique de Hausdorff sur les convexes fermés bornés [16] et admet en général une représentation en terme de cette dernière [11]. De plus, la métrique qui lui est associée s’est révélée très adéquate pour l’étude quantitative...

Analyse de récession et résultats de stabilité d'une convergence variationnelle, application à la théorie de la dualité en programmation mathématique

Driss Mentagui (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Let X be a Banach space and X' its continuous dual. C(X) (resp. C(X')) denotes the set of nonempty convex closed subsets of X (resp. ω*-closed subsets of X') endowed with the topology of uniform convergence of distance functions on bounded sets. This topology reduces to the Hausdorff metric topology on the closed and bounded convex sets [16] and in general has a Hausdorff-like presentation [11]. Moreover, this topology is well suited for estimations and constructive approximations [6-9]. We...

Analytic Baire spaces

A. J. Ostaszewski (2012)

Fundamenta Mathematicae

We generalize to the non-separable context a theorem of Levi characterizing Baire analytic spaces. This allows us to prove a joint-continuity result for non-separable normed groups, previously known only in the separable context.

Analytic functions are -density continuous

Krzysztof Ciesielski, Lee Larson (1994)

Commentationes Mathematicae Universitatis Carolinae

A real function is -density continuous if it is continuous with the -density topology on both the domain and the range. If f is analytic, then f is -density continuous. There exists a function which is both C and convex which is not -density continuous.

Anisotropic functions : a genericity result with crystallographic implications

Victor J. Mizel, Alexander J. Zaslavski (2004)

ESAIM: Control, Optimisation and Calculus of Variations

In the 1950’s and 1960’s surface physicists/metallurgists such as Herring and Mullins applied ingenious thermodynamic arguments to explain a number of experimentally observed surface phenomena in crystals. These insights permitted the successful engineering of a large number of alloys, where the major mathematical novelty was that the surface response to external stress was anisotropic. By examining step/terrace (vicinal) surface defects it was discovered through lengthy and tedious experiments...

Anisotropic functions: a genericity result with crystallographic implications

Victor J. Mizel, Alexander J. Zaslavski (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In the 1950's and 1960's surface physicists/metallurgists such as Herring and Mullins applied ingenious thermodynamic arguments to explain a number of experimentally observed surface phenomena in crystals. These insights permitted the successful engineering of a large number of alloys, where the major mathematical novelty was that the surface response to external stress was anisotropic. By examining step/terrace (vicinal) surface defects it was discovered through lengthy and tedious experiments...

Application of Fractional Calculus in the Dynamical Analysis and Control of Mechanical Manipulators

Ferreira, N., Duarte, Fernando, Lima, Miguel, Marcos, Maria, Machado, J. (2008)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33, 93C83, 93C85, 68T40Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades. In the field of dynamical systems theory some work has been carried out but the proposed models and algorithms are still in a preliminary stage of establishment. This article illustrates several applications of fractional calculus in robot manipulator path planning and control....

Applications of certain linear operators in the theory of analytic functions

H. M. Srivastava (1991)

Annales Polonici Mathematici

The object of the present paper is to illustrate the usefulness, in the theory of analytic functions, of various linear operators which are defined in terms of (for example) fractional derivatives and fractional integrals, Hadamard product or convolution, and so on.

Applications of the Owa-Srivastava Operator to the Class of K-Uniformly Convex Functions

Mishra, A. K., Gochhayat, P. (2006)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: Primary 30C45, 26A33; Secondary 33C15By making use of the fractional differential operator Ω^λz (0 ≤ λ < 1) due to Owa and Srivastava, a new subclass of univalent functions denoted by k−SPλ (0 ≤ k < ∞) is introduced. The class k−SPλ unifies the concepts of k-uniformly convex functions and k-starlike functions. Certain basic properties of k − SPλ such as inclusion theorem, subordination theorem, growth theorem and class preserving transforms are studied.*...

Currently displaying 261 – 280 of 2145