Some properties of real functions of two variables and some consequences
We present the full descriptive characterizations of the strong McShane integral (or the variational McShane integral) of a Banach space valued function defined on a non-degenerate closed subinterval of in terms of strong absolute continuity or, equivalently, in terms of McShane variational measure generated by the primitive of , where is the family of all closed non-degenerate subintervals of .
We show that for a wide class of σ-algebras 𝓐, indicatrices of 𝓐-measurable functions admit the same characterization as indicatrices of Lebesgue-measurable functions. In particular, this applies to functions measurable in the sense of Marczewski.
Mean value inequalities are shown for functions which are sub- or super-differentiable at every point.
We show that the theorem proved in [8] generalises the previous results concerning orientation-preserving iterative roots of homeomorphisms of the circle with a rational rotation number (see [2], [6], [10] and [7]).
Two properties concerning the space of differences of sublinear functions D(X) for a real Banach space X are proved. First, we show that for a real separable Banach space (X,‖·‖) there exists a countable family of seminorms such that D(X) becomes a Fréchet space. For X = ℝ^n this construction yields a norm such that D(ℝ^n) becomes a Banach space. Furthermore, we show that for a real Banach space with a smooth dual every sublinear Lipschitzian function can be expressed by the Fenchel conjugate of...
We consider the Fourier transform in the space of Henstock-Kurzweil integrable functions. We prove that the classical results related to the Riemann-Lebesgue lemma, existence and continuity are true in appropriate subspaces.
In this paper, we consider a fractional impulsive boundary value problem on infinite intervals. We obtain the existence, uniqueness and computational method of unbounded positive solutions.
We study moments of the difference concerning derangement polynomials . For the first moment, we obtain an explicit formula in terms of the exponential integral function and we show that it is always negative for . For the higher moments, we obtain a multiple integral representation of the order of the moment under computation.
We give a necessary and sufficient condition for a map deffned on a simply-connected quasi-convex metric space to factor through a tree. In case the target is the Euclidean plane and the map is Hölder continuous with exponent bigger than 1/2, such maps can be characterized by the vanishing of some integrals over winding number functions. This in particular shows that if the target is the Heisenberg group equipped with the Carnot-Carathéodory metric and the Hölder exponent of the map is bigger than...
In this paper we define certain types of projections of planar sets and study some properties of such projections.
We study the boundedness of the one-sided operator between the weighted spaces and for every weight w. If λ = 2/p whenever 1 < p < 2, and in the case p = 1 for λ > 2, we prove the weak type of . For every λ > 1 and p = 2, or λ > 2/p and 1 < p < 2, the boundedness of this operator is obtained. For p > 2 and λ > 1, we obtain the boundedness of from to , where denotes the operator M¯ iterated k times.