Fractal Wavelet Dimensions and Time Evolution
Statistically self-similar measures on [0, 1] are limit of multiplicative cascades of random weights distributed on the b-adic subintervals of [0, 1]. These weights are i.i.d., positive, and of expectation 1/b. We extend these cascades naturally by allowing the random weights to take negative values. This yields martingales taking values in the space of continuous functions on [0, 1]. Specifically, we consider for each H∈(0, 1) the martingale (Bn)n≥1 obtained when the weights take the values −b−H...
Fine regularity of stochastic processes is usually measured in a local way by local Hölder exponents and in a global way by fractal dimensions. In the case of multiparameter Gaussian random fields, Adler proved that these two concepts are connected under the assumption of increment stationarity property. The aim of this paper is to consider the case of Gaussian fields without any stationarity condition. More precisely, we prove that almost surely the Hausdorff dimensions of the range and the graph...
We prove a dimension compression estimate for homeomorphic mappings of exponentially integrable distortion via a modulus of continuity result by D. Herron and P. Koskela [Mappings of finite distortion: gauge dimension of generalized quasicircles, Illinois J. Math., 2003, 47(4), 1243–1259]. The essential sharpness of our estimate is demonstrated by an example.
In many recent articles, medians have been used as a replacement of integral averages when the function fails to be locally integrable. A point in a metric measure space is called a generalized Lebesgue point of a measurable function if the medians of over the balls converge to when converges to . We know that almost every point of a measurable, almost everywhere finite function is a generalized Lebesgue point and the same is true for every point of a continuous function. We show...
We show that the theory of graph directed Markov systems can be used to study exceptional minimal sets of some foliated manifolds. A C¹ smooth embedding of a contracting or parabolic Markov system into the holonomy pseudogroup of a codimension one foliation allows us to describe in detail the h-dimensional Hausdorff and packing measures of the intersection of a complete transversal with exceptional minimal sets.
The classical self-similar fractals can be obtained as fixed points of the iteration technique introduced by Hutchinson. The well known results of Mosco show that typically the limit fractal equipped with the invariant measure is a (normal) space of homogeneous type. But the doubling property along this iteration is generally not preserved even when the starting point, and of course the limit point, both have the doubling property. We prove that the elements of Hutchinson orbits possess the doubling...
This subject has several natural points of view, but we shall start with the one that corresponds to the following question: Is there something like Littlewood-Paley theory which is useful for analyzing the geometry of subsets of Rn, in much the same way that traditional Littlewood-Paley theory is good for analyzing functions and operators?
We construct examples of expanding piecewise monotonic maps on the interval which have a closed topologically transitive invariant subset A with Darboux property, Hausdorff dimension d ∈ (0,1) and zero d-dimensional Hausdorff measure. This shows that the results about Hausdorff and conformal measures proved in the first part of this paper are in some sense best possible.
Let A be a topologically transitive invariant subset of an expanding piecewise monotonic map on [0,1] with the Darboux property. We investigate existence and uniqueness of conformal measures on A and relate Hausdorff and conformal measures on A to each other.
We extend the notions of Hausdorff and packing dimension introducing weights in their definition. These dimensions are computed for ergodic invariant probability measures of two-dimensional Lorenz transformations, which are transformations of the type occuring as first return maps to a certain cross section for the Lorenz differential equation. We give a formula of the dimensions of such measures in terms of entropy and Lyapunov exponents. This is done for two choices of the weights using the recurrence...
For a linear solenoid with two different contraction coefficients and box dimension greater than 2, we give precise formulas for the Hausdorff and packing dimensions. We prove that the packing measure is infinite and give a condition necessary and sufficient for the Hausdorff measure to be positive, finite and equivalent to the SBR measure. We also give analogous results, generalizing [P], for affine IFS in ℝ².
We study the Julia sets for some periodic meromorphic maps, namely the maps of the form where h is a rational function or, equivalently, the maps . When the closure of the forward orbits of all critical and asymptotic values is disjoint from the Julia set, then it is hyperbolic and it is possible to construct the Gibbs states on J(˜f) for -α log |˜˜f|. For ˜α = HD(J(˜f)) this state is equivalent to the ˜α-Hausdorff measure or to the ˜α-packing measure provided ˜α is greater or smaller than 1....
We obtain a lower bound for the Hausdorff dimension of the graph of a fractal interpolation function with interpolation points .