Entire functions and logarithmic sums over nonsymmetric sets of the real line.
It is well known that certain transformations decrease the capacity of a condenser. We prove equality statements for the condenser capacity inequalities under symmetrization and polarization without connectivity restrictions on the condenser and without regularity assumptions on the boundary of the condenser.
Given a rational function on of degree at least 2 with coefficients in a number field , we show that for each place of , there is a unique probability measure on the Berkovich space such that if is a sequence of points in whose -canonical heights tend to zero, then the ’s and their -conjugates are equidistributed with respect to .The proof uses a polynomial lift of to construct a two-variable Arakelov-Green’s function for each . The measure is obtained by taking the...
Dans cet article on étudie les fonctions surharmoniques dans un espace muni de la théorie axiomatique des fonctions harmoniques avec les axiomes 1, 2, 3 de M. Brelot, en supposant que les constantes sont harmoniques dans et qu’il n’existe pas de potentiel dans . Ainsi, dans la théorie axiomatique, on se propose de chercher à étendre les particularités du cas plan et quelques résultats sur les surfaces de Riemann du type parabolique. On démontre premièrement, en utilisant une notion de flux...
Let be an open set with a compact boundary and let be a finite measure on . Consider the space of all -integrable functions on and, for each...
Let () be a compact set; assume that each ball centered on the boundary of meets in a set of positive Lebesgue measure. Let be the class of all continuously differentiable real-valued functions with compact support in and denote by the area of the unit sphere in . With each we associate the function of the variable (which is continuous in and harmonic in ). depends only on the restriction of to the boundary of . This gives rise to a linear operator acting from...