Displaying 561 – 580 of 622

Showing per page

Topologies fines et compactifications associées à certains espaces de Dirichlet

Denis Feyel, A. de La Pradelle (1977)

Annales de l'institut Fourier

Nous commençons par définir la notion d’espaces L 1 ( γ ) γ est une capacité, ce qui permet d’introduire la notion de mesure d’énergie finie par rapport à γ , et de parler d’espaces de Dirichlet basés sur γ .Soit d’autre part un espace de Dirichlet en ce sens avec potentiels s.c.i. : on étudie les espaces de Dirichlet sur les ouverts fins correspondants à l’aide d’une compactification. On retrouve plus facilement et on généralise les résultats de D. Feyel et A. de La Pradelle, (Lecture Notes).

Topologies semi-vectorielles. Application à l'analyse complexe

Pierre Lelong (1975)

Annales de l'institut Fourier

On définit sur un espace vectoriel E une classe de topologies qui rendent la multiplication continue, mais ne sont pas vectorielles en général. Sur un espace complexe E elles permettent d’obtenir encore les principales propriétés des fonctions plurisousharmoniques. De telles topologies séparées sont localement pseudo-convexes (mais non localement convexes en général) : cette notion intervient dans les extensions données récemment par l’auteur du théorème de Banach-Steinhaus aux familles de polynômes...

Transitions on a noncompact Cantor set and random walks on its defining tree

Jun Kigami (2013)

Annales de l'I.H.P. Probabilités et statistiques

First, noncompact Cantor sets along with their defining trees are introduced as a natural generalization of p -adic numbers. Secondly we construct a class of jump processes on a noncompact Cantor set from given pairs of eigenvalues and measures. At the same time, we have concrete expressions of the associated jump kernels and transition densities. Then we construct intrinsic metrics on noncompact Cantor set to obtain estimates of transition densities and jump kernels under some regularity conditions...

Trudinger's inequality for double phase functionals with variable exponents

Fumi-Yuki Maeda, Yoshihiro Mizuta, Takao Ohno, Tetsu Shimomura (2021)

Czechoslovak Mathematical Journal

Our aim in this paper is to establish Trudinger’s inequality on Musielak-Orlicz-Morrey spaces L Φ , κ ( G ) under conditions on Φ which are essentially weaker than those considered in a former paper. As an application and example, we show Trudinger’s inequality for double phase functionals Φ ( x , t ) = t p ( x ) + a ( x ) t q ( x ) , where p ( · ) and q ( · ) satisfy log-Hölder conditions and a ( · ) is nonnegative, bounded and Hölder continuous.

Une propriété de la compactification de Martin d'un domaine euclidien

Alano Ancona (1979)

Annales de l'institut Fourier

Si B est une boule ouverte contenue dans le domaine euclidien Ω , tout filtre sur B , tendant non tangentiellement vers un point de Ω B , converge vers un point minimal dans le compactifié de Martin de Ω . On donne une application, et une variante dans le cas plan, et on termine par un contre-exemple apportant une solution négative à un problème de R.S. Martin. L’idée générale de l’article est d’établir des variantes des inégalités de Harnack pour déterminer la frontière de Martin du domaine.

Vector-valued holomorphic and harmonic functions

Wolfgang Arendt (2016)

Concrete Operators

Holomorphic and harmonic functions with values in a Banach space are investigated. Following an approach given in a joint article with Nikolski [4] it is shown that for bounded functions with values in a Banach space it suffices that the composition with functionals in a separating subspace of the dual space be holomorphic to deduce holomorphy. Another result is Vitali’s convergence theorem for holomorphic functions. The main novelty in the article is to prove analogous results for harmonic functions...

Voiculescu’s Entropy and Potential Theory

Thomas Bloom (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

We give a new proof, relying on polynomial inequalities and some aspects of potential theory, of large deviation results for ensembles of random hermitian matrices.

Volume mean values of subtemperatures

Neil Watson (2000)

Colloquium Mathematicae

Several authors have found the characteristic mean value formula for temperatures over heat spheres. Those who derived a corresponding formula over heat balls have all chosen different mean values. In this paper we discuss an infinity of possible means over heat balls, and show that, in the wider context of subtemperatures, some are more desirable than others.

Currently displaying 561 – 580 of 622