The New Estimate for the Subbundles Ej and Its Application to the Deformation of the Boundaries of Strongly Pseudo Convex Domains.
The aim of this paper is to establish the equivalence between the non-pluripolarity of a compact set in a complex space and the property for the dual space of the space of germs of holomorphic functions on that compact set.
Let be a complex analytic manifold of dimension with a hermitian metric and boundary, and let be the self-adjoint -Neumann operator on the space of forms of type . If the Levi form of has everywhere at least positive or at least negative eigenvalues, it is well known that has finite dimension and that the range of is the orthogonal complement. In...
It is shown that a sequentially complete topological vector space X with a compact Schauder basis has WSPAP (see Definition 2) if and only if X has a pseudo-homogeneous norm bounded on every compact subset of X.
We consider the (characteristic and non-characteristic) Cauchy problem for a system of constant coefficients partial differential equations with initial data on an affine subspace of arbitrary codimension. We show that evolution is equivalent to the validity of a principle on the complex characteristic variety and we study the relationship of this condition with the one introduced by Hörmander in the case of scalar operators and initial data on a hypersurface.
Let D be a smooth bounded pseudoconvex domain in ℂⁿ of finite type. We prove an estimate on the pluricomplex Green function of D that gives quantitative information on how fast the Green function vanishes if the pole w approaches the boundary. Also the Hölder continuity of the Green function is discussed.
We show that the projections of the pluripolar hull of the graph of an analytic function in a subdomain of the complex plane are open in the fine topology.