The micro-support of the complex defined by a convolution operator in tube domains
The behaviour of a holomorphic map germ at a critical point has always been an important part of the singularity theory. It is generally known (cf. [5]) that we can associate an integer invariant - called the multiplicity - to each isolated critical point of a holomorphic function of many variables. Several years later it was noticed that similar invariants exist for function germs defined on isolated hypersurface singularities (see [1]). The present paper aims to show a simple approach to critical...
The monodromy conjecture states that every pole of the topological (or related) zeta function induces an eigenvalue of monodromy. This conjecture has already been studied a lot. However in full generality it is proven only for zeta functions associated to polynomials in two variables.In this article we work with zeta functions associated to an ideal. First we work in arbitrary dimension and obtain a formula (like the one of A’Campo) to compute the “Verdier monodromy” eigenvalues associated to an...
In this paper a new class of multi-valued mappings (multi-morphisms) is defined as a version of a strongly admissible mapping, and its properties and applications are presented.
The Mumford Conjecture asserts that the rational cohomology of the stable moduli space of Riemann surfaces is a polynomial algebra on the Mumford-Morita-Miller characteristic classes; this can be reformulated in terms of the classifying space derived from the mapping class groups. The conjecture admits a topological generalization, inspired by Tillmann’s theorem that admits an infinite loop space structure after applying Quillen’s plus construction. The text presents the proof by Madsen and...