On the Kähler form of the moduli space of once punctured tori.
Harvey and Lawson introduced the Kähler rank and computed it in connection to the cone of positive exact currents of bidimension for many classes of compact complex surfaces. In this paper we extend these computations to the only further known class of surfaces not considered by them, that of Kato surfaces. Our main tool is the reduction to the dynamics of associated holomorphic contractions .
We discuss some conditions which guarantee that the Kuratowski limit of a sequence of analytic sets is a Nash set.
The Banach-Lie algebras ℌκ of all holomorphic infinitesimal isometries of the classical symmetric complex Banach manifolds of compact type (κ = 1) and non compact type (κ = −1) associated with a complex JB*-triple Z are considered and the Lie ideal structure of ℌκ is studied.
Let M be a generic CR submanifold in , m = CR dim M ≥ 1, n = codim M ≥ 1, d = dim M = 2m + n. A CR meromorphic mapping (in the sense of Harvey-Lawson) is a triple , where: 1) is a ¹-smooth mapping defined over a dense open subset of M with values in a projective manifold Y; 2) the closure of its graph in defines an oriented scarred ¹-smooth CR manifold of CR dimension m (i.e. CR outside a closed thin set) and 3) in the sense of currents. We prove that extends meromorphically to a wedge...
An effective formula for the Łojasiewicz exponent for analytic curves in a neighbourhood of 0 ∈ ℂ is given.
We give the formula expressing the Łojasiewicz exponent near the fibre of polynomial mappings in two variables in terms of the Puiseux expansions at infinity of the fibre.
The Łojasiewicz exponent of the gradient of a convergent power series h(X,Y) with complex coefficients is the greatest lower bound of the set of λ > 0 such that the inequality holds near for a certain c > 0. In the paper, we give an estimate of the Łojasiewicz exponent of grad h using information from the Newton diagram of h. We obtain the exact value of the exponent for non-degenerate series.