Application of the logarithmic differential to the holomorphic extension problem for -hyperfunctions.
Nous appliquons les résultats d’un article précédent au domaine des fonctions différentiables. Nous obtenons en particulier des théorèmes de division et des théorèmes de fonctions composées.
We give several extensions to unbounded domains of the following classical theorem of H. Cartan: A biholomorphism between two bounded complete circular domains of Cn which fixes the origin is a linear map. In our paper, pseudo-convexity plays a main role. Some precise study is done for the case of dimension two and the case where one of the domains is Cn.
The Root Conjecture predicts that every pseudo-Anosov diffeomorphism of a closed surface has Teichmüller approximate th roots for all . In this paper, we replace the Teichmüller topology by the heights-widths topology – that is induced by convergence of tangent quadratic differentials with respect to both the heights and widths functionals – and show that every pseudo-Anosov diffeomorphism of a closed surface has heights-widths approximate th roots for all .
On étudie l’approximation des fonctions holomorphes dans un ouvert de , qui satisfont des hypothèses de croissance, par des fonctions holomorphes dans un ouvert plus grand et qui satisfont des hypothèses de croissance plus strictes. Les hypothèses de croissance sont définies par des poids , avec , auxquels sont associées des algèbres . On établit en particulier un théorème d’approximation des fonctions de par celles de lorsque a une propriété de convexité convenable relativement aux fonctions...
We apply pluripotential theory to establish results in concerning uniform approximation by functions of the form wⁿPₙ where w denotes a continuous nonnegative function and Pₙ is a polynomial of degree at most n. Then we use our work to show that on the intersection of compact sections a continuous function on Σ is uniformly approximable by θ-incomplete polynomials (for a fixed θ, 0 < θ < 1) iff f vanishes on θ²Σ. The class of sets Σ expressible as the intersection of compact sections includes...
Soit un espace de Banach complexe, et notons la boule de rayon centrée en . On considère le problème d’approximation suivant: étant donnés , et une fonction holomorphe dans , existe-t-il toujours une fonction , holomorphe dans , telle que sur ? On démontre que c’est bien le cas si est l’espace des suites sommables.