Bildgarben und Fasercohomologie für relativ analytische Räume.
Given a Lipschitz stratification 𝒳 that additionally satisfies condition (δ) of Bekka-Trotman (for instance any Lipschitz stratification of a subanalytic set), we show that for every stratum N of 𝒳 the distance function to N is locally bi-Lipschitz trivial along N. The trivialization is obtained by integration of a Lipschitz vector field.
A binomial residue is a rational function defined by a hypergeometric integral whose kernel is singular along binomial divisors. Binomial residues provide an integral representation for rational solutions of -hypergeometric systems of Lawrence type. The space of binomial residues of a given degree, modulo those which are polynomial in some variable, has dimension equal to the Euler characteristic of the matroid associated with .
We initiate the study of Bloch type spaces on the unit ball of a Hilbert space. As applications, the Hardy-Littlewood theorem in infinite-dimensional Hilbert spaces and characterizations of some holomorphic function spaces related to the Bloch type space are presented.
Let φ be a holomorphic mapping between complex unit balls. We characterize those regular φ for which the composition operators C φ: f ↦ f ○ φ map the Bloch space into the Hardy space.
Let be the class of tempered distributions. For we denote by the Bessel potential of of order . We prove that if , then for any , , where , . Also, we give necessary and sufficient conditions in order that the Bessel potential of a tempered distribution of order belongs to the space.
Let S ⊂ ℂⁿ, n ≥ 3, be a compact connected 2-codimensional submanifold having the following property: there exists a Levi-flat hypersurface whose boundary is S, possibly as a current. Our goal is to get examples of such S containing at least one special 1-hyperbolic point: a sphere with two horns, elementary models and their gluings. Some particular cases of S being a graph are also described.
We survey variations of the Bergman kernel and their asymptotic behaviors at degeneration. For a Legendre family of elliptic curves, the curvature form of the relative Bergman kernel metric is equal to the Poincaré metric on ℂ 0,1. The cases of other elliptic curves are either the same or trivial. Two proofs depending on elliptic functions’ special properties and Abelian differentials’ Taylor expansions are discussed, respectively. For a holomorphic family of hyperelliptic nodal or cuspidal curves...
We study the boundary behaviour of holomorphic functions in the Hardy-Sobolev spaces , where is a smooth, bounded convex domain of finite type in ℂⁿ, by describing the approach regions for such functions. In particular, we extend a phenomenon first discovered by Nagel-Rudin and Shapiro in the case of the unit disk, and later extended by Sueiro to the case of strongly pseudoconvex domains.
In questa Nota viene studiato il comportamento al bordo delle distanze di Carathéodory e Kobayashi in domini fortemente pseudoconvessi di classe . Come applicazione si dimostra che ogni geodetica complessa in tali domini è estendibile al bordo di classe .