Discriminant d’un germe et quotients de contact dans la résolution de
We define a function μ from the set of sequences in the unit ball to R*+ by taking the greatest lower bound of the reciprocal of the interpolating constant of the sequences of the disk which get mapped to the given sequence by a holomorphic mapping from the disk to the ball. Its properties are studied in the spirit of the work of Amar and Thomas.
Pour un ensemble sous-analytique, connexe fermé, la distance géodésique est atteinte et est uniformément équivalente, avec des constantes arbitrairement proches de 1, à une distance sous-analytique.
Nous construisons pour toute correspondance polynomiale d’exposant de Lojasiewicz une mesure d’équilibre . Nous montrons que est approximable par les préimages d’un point générique et que les points périodiques répulsifs sont équidistribués sur le support de . En utilisant ces résultats, nous donnons une caractérisation des ensembles d’unicité pour les polynômes.
We determine the asymptotics of the joint eigenfunctions of the torus action on a toric Kähler variety. Such varieties are models of completely integrable systems in complex geometry. We first determine the pointwise asymptotics of the eigenfunctions, which show that they behave like Gaussians centered at the corresponding classical torus. We then show that there is a universal Gaussian scaling limit of the distribution function near its center. We also determine the limit...
Given an irreducible algebraic curves in , let be the dimension of the complex vector space of all holomorphic polynomials of degree at most restricted to . Let be a nonpolar compact subset of , and for each choose points in . Finally, let be the -th Lebesgue constant of the array ; i.e., is the operator norm of the Lagrange interpolation operator acting on , where is the Lagrange interpolating polynomial for of degree at the points . Using techniques of pluripotential...
Let D be a bounded strictly pseudoconvex domain of Cn with C ∞ boundary and Y = {z; u1(z) = ... = ul(z) = 0} a holomorphic submanifold in the neighbourhood of D', of codimension l and transversal to the boundary of D.In this work we give a decomposition formula f = u1f1 + ... + ulfl for functions f of the Bergman-Sobolev space vanishing on M = Y ∩ D. Also we give necessary and sufficient conditions on a set of holomorphic functions {fα}|α|≤m on M, so that there exists a holomorphic function in the...
We consider subrings A of the ring of formal power series. They are defined by growth conditions on coefficients such as, for instance, Gevrey conditions. We prove a Weierstrass-Hironaka division theorem for such subrings. Moreover, given an ideal ℐ of A and a series f in A we prove the existence in A of a unique remainder r modulo ℐ. As a consequence, we get a new proof of the noetherianity of A.