...k + a-estimates of the ...-equation on the Hartogs triangle.
Étude de la possibilité d’inverser le théorème de Bremerman : si et sont deux domaines bornés dans et et si , alors où désigne la fonction-noyau de Bergman. On introduit une classe de domaines dans qui contient les domaines de Reinhardt et de Hartogs et différentes fonctions “correctives” qui expriment la différence entre la fonction-noyau du domaine et le produit des fonctions-noyaux de sa “base” dans et de ses “fibres” dans . Divers moyens d’inverser le théorème de Bremerman...
We present a multidimensional analogue of an inequality by van der Corput-Visser concerning the coefficients of a real trigonometric polynomial. As an application, we obtain an improved estimate from below of the Bohr radius for the hypercone 𝓓₁ⁿ = {z ∈ ℂⁿ: |z₁|+. .. +|zₙ| < 1} when 3 ≤ n ≤ 10.
A notion of negligible sets for polydiscs is introduced. Some properties of non-negligible sets are proved. These results are used to construct good and good inner functions on polydiscs.
For some given logarithmically convex sequence M of positive numbers we construct a subspace of the space of rapidly decreasing infinitely differentiable functions on an unbounded closed convex set in ℝn. Due to the conditions on M each function of this space admits a holomorphic extension in ℂn. In the current article, the space of holomorphic extensions is considered and Paley-Wiener type theorems are established. To prove these theorems, some auxiliary results on extensions of holomorphic functions...
For bounded logarithmically convex Reinhardt pairs "compact set - domain" (K,D) we solve positively the problem on simultaneous approximation of such a pair by a pair of special analytic polyhedra, generated by the same polynomial mapping f: D → ℂⁿ, n = dimΩ. This problem is closely connected with the problem of approximation of the pluripotential ω(D,K;z) by pluripotentials with a finite set of isolated logarithmic singularities ([23, 24]). The latter problem has been solved recently for arbitrary...