Displaying 21 – 40 of 72

Showing per page

Interpolating sequences, Carleson measures and Wirtinger inequality

Eric Amar (2008)

Annales Polonici Mathematici

Let S be a sequence of points in the unit ball of ℂⁿ which is separated for the hyperbolic distance and contained in the zero set of a Nevanlinna function. We prove that the associated measure μ S : = a S ( 1 - | a | ² ) δ a is bounded, by use of the Wirtinger inequality. Conversely, if X is an analytic subset of such that any δ -separated sequence S has its associated measure μ S bounded by C/δⁿ, then X is the zero set of a function in the Nevanlinna class of . As an easy consequence, we prove that if S is a dual bounded sequence...

Le lemme fondamental de Nilsson dans le cas analytique local

Le Van Thanh (1982)

Annales de l'institut Fourier

On donne des évaluations précises de la croissance modérée des intégrales de fonctions de classe de Nilsson locale dans C 2 , exprimées par des caractéristiques topologiques des courbes de ramification des intégrands.

Limit currents and value distribution of holomorphic maps

Daniel Burns, Nessim Sibony (2012)

Annales de l’institut Fourier

We construct d -closed and d d c -closed positive currents associated to a holomorphic map φ via cluster points of normalized weighted truncated image currents. They are constructed using analogues of the Ahlfors length-area inequality in higher dimensions. Such classes of currents are also referred to as Ahlfors currents. We give some applications to equidistribution problems in value distribution theory.

Lower bounds for norms of products of polynomials on L p spaces

Daniel Carando, Damián Pinasco, Jorge Tomás Rodríguez (2013)

Studia Mathematica

For 1 < p < 2 we obtain sharp lower bounds for the uniform norm of products of homogeneous polynomials on L p ( μ ) , whenever the number of factors is no greater than the dimension of these Banach spaces (a condition readily satisfied in infinite-dimensional settings). The result also holds for the Schatten classes p . For p > 2 we present some estimates on the constants involved.

Meilleure approximation polynomiale et croissance des fonctions entières sur certaines variétés algébriques affines

Ahmed Zeriahi (1987)

Annales de l'institut Fourier

Soit K un compact polynomialement convexe de C n et V K son “potentiel logarithmique extrémal” dans C n . Supposons que K est régulier (i.e. V K continue) et soit f une fonction holomorphe sur un voisinage de K . On construit alors une suite { P } 1 de polynôme de n variables complexes avec deg ( P ) pour 1 , telle que l’erreur d’approximation max z K | f ( z ) - P ( z ) | soit contrôlée de façon assez précise en fonction du “pseudorayon de convergence” de f par rapport à K et du degré de convergence . Ce résultat est ensuite utilisé pour étendre...

Multiple values and uniqueness problem for meromorphic mappings sharing hyperplanes

Ting-Bin Cao, Kai Liu, Hong-Zhe Cao (2013)

Annales Polonici Mathematici

The purpose of this article is to deal with multiple values and the uniqueness problem for meromorphic mappings from m into the complex projective space ℙⁿ(ℂ) sharing hyperplanes. We obtain two uniqueness theorems which improve and extend some known results.

Currently displaying 21 – 40 of 72