A Bochner-Martinelli formula for vector fields which satisfy the generalized Cauchy-Riemann equations
Page 1 Next
R. G. M. Brummelhuis (1988)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Mats Andersson, Sebastian Sandberg (2000)
Studia Mathematica
We give a new constructive proof of the composition rule for Taylor's functional calculus for commuting operators on a Banach space.
Michael Pannenberg (1986)
Journal für die reine und angewandte Mathematik
Bo Berndtsson (1983)
Mathematische Annalen
Maciej Skwarczyński (1985)
Annales Polonici Mathematici
Jacob Burbea (1981)
Annales Polonici Mathematici
S. Chang (1981)
Studia Mathematica
Harold P. Boas (1980)
Mathematische Annalen
Jürgen Leiterer, B. Fischer (1993)
Mathematische Zeitschrift
F. Vasilescu (1982)
Banach Center Publications
Bo-Yong Chen (2007)
Annales Polonici Mathematici
We introduce a new invariant Kähler metric on relatively compact domains in a complex manifold, which is the Bergman metric of the L² space of holomorphic sections of the pluricanonical bundle equipped with the Hermitian metric introduced by Narasimhan-Simha.
S.M. Webster (1989)
Mathematische Zeitschrift
Pilipovic, Stevan (1989)
Portugaliae mathematica
Stefan Richter, Brett D. Wick (2016)
Concrete Operators
If H denotes a Hilbert space of analytic functions on a region Ω ⊆ Cd , then the weak product is defined by [...] We prove that if H is a first order holomorphic Besov Hilbert space on the unit ball of Cd , then the multiplier algebras of H and of H ⊙ H coincide.
So-Chin Chen (1991)
Mathematische Annalen
Shaimkulov, B.A. (2002)
Sibirskij Matematicheskij Zhurnal
Harutyunyan, A.V., Petrosyan, A.I (2005)
General Mathematics
Telemachos Hatziafratis (1991)
Publicacions Matemàtiques
A Bochner-Martinelli-Koppelman type integral formula on submanifolds of pseudoconvex domains in Cn is derived; the result gives, in particular, integral formulas on Stein manifolds.
Telemachos E. Hatziafaris (1986)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
M. Kashiwara (1976/1977)
Séminaire Équations aux dérivées partielles (Polytechnique)
Page 1 Next