Équation de Cauchy-Riemann dans les ellipsoïdes réels de
In this paper, we give precise isotropic and non-isotropic estimates for the Bergman and Szegö projections of a bounded pseudoconvex domain whose boundary points are all of finite type and with locally diagonalizable Levi form. Additional local results on estimates of invariant metrics are also given.
Sharp geometrical lower and upper estimates are obtained for the Bergman kernel on the diagonal of a convex domain D ⊂ ℂⁿ which does not contain complex lines. It is also proved that the ratio of the Bergman and Carathéodory metrics of D does not exceed a constant depending only on n.
Using explicit integral formulas introduced by Skoda, we obtain Hölder estimates for the δ-equation in convex domains of finite type in C2.
Strong pathologies with respect to growth properties can occur for the extension of holomorphic functions from submanifolds of pseudoconvex domains to all of even in quite simple situations; The spaces are, in general, not at all preserved. Also the image of the Hilbert space under the restriction to can have a very strange structure.
Let D be a bounded strictly pseudoconvex domain with smooth boundary and f = (f1, ..., fp) (fi ∈ Hol(D)) a complete intersection with normal crossing. In this paper we study an extension problem in L∞-norm for holomorphic functions defined on f-1(0) ∩ D and a decomposition formula g = ∑i=1p figi for holomorphic functions g ∈ I(f1, ..., fp)(D) in Lipschitz spaces. We stress that for the two problems the classical theorem cannot be applied because f-1(0) has singularities on the boundary ∂D. This...
We study the extension problem for germs of holomorphic isometries up to normalizing constants between bounded domains in Euclidean spaces equipped with Bergman metrics on and on . Our main focus is on boundary extension for pairs of bounded domains such that the Bergman kernel extends meromorphically in to a neighborhood of , and such that the analogous statement holds true for the Bergman kernel on . Assuming that and are complete Kähler manifolds, we prove that the germ...