-domains of holomorphy and the Bergman kernel
We give a characterization of -domains of holomorphy with the help of the boundary behavior of the Bergman kernel and geometric properties of the boundary, respectively.
We give a characterization of -domains of holomorphy with the help of the boundary behavior of the Bergman kernel and geometric properties of the boundary, respectively.
On donne des évaluations précises de la croissance modérée des intégrales de fonctions de classe de Nilsson locale dans , exprimées par des caractéristiques topologiques des courbes de ramification des intégrands.
Étude de la possibilité d’inverser le théorème de Bremerman : si et sont deux domaines bornés dans et et si , alors où désigne la fonction-noyau de Bergman. On introduit une classe de domaines dans qui contient les domaines de Reinhardt et de Hartogs et différentes fonctions “correctives” qui expriment la différence entre la fonction-noyau du domaine et le produit des fonctions-noyaux de sa “base” dans et de ses “fibres” dans . Divers moyens d’inverser le théorème de Bremerman...
Let G be a complex semi-simple group with a compact maximal group K and an irreducible holomorphic representation ρ on a finite dimensional space V. There exists on V a K-invariant Hermitian scalar product. Let Ω be the intersection of the unit ball of V with the G-orbit of a dominant vector. Ω is a generalization of the unit ball (case obtained for G = SL(n,C) and ρ the natural representation on Cn).We prove that for such manifolds, the Bergman and Szegö kernels as for the ball are rational fractions...
Si introducono due strutture di gruppo di Lie su un dominio di Siegel omogeneo di . Per la palla unitaria si definisce una famiglia ad un parametro di strutture intermedie; ad ognuna di esse viene associato naturalmente un nucleo riproducente ottenendo un'interpolazione tra il nucleo di Bergman ed il nucleo di Szego.