Paramétrixes d'opérateurs pseudo-différentiels à caractéristiques multiples
Page 1
Louis Boutet de Monvel, Alain Grigis, Bernard Helffer (1975)
Journées équations aux dérivées partielles
Henrik Delin (1998)
Annales de l'institut Fourier
Weighted estimates are obtained for the canonical solution to the equation in , where is a pseudoconvex domain, and is a strictly plurisubharmonic function. These estimates are then used to prove pointwise estimates for the Bergman projection kernel in . The weight is used to obtain a factor in the estimate of the kernel, where is the distance function in the Kähler metric given by the metric form .
H. Florian, G. Jank (1971)
Monatshefte für Mathematik
C. Sabbah (1986/1987)
Séminaire Équations aux dérivées partielles (Polytechnique)
Aline Bonami, Noël Lohoué (1982)
Compositio Mathematica
Klas Diederich, John Eric Fornaess (1982)
Mathematische Annalen
E. H. Youssfi (2002)
Studia Mathematica
We consider a large class of convex circular domains in which contains the oval domains and minimal balls. We compute their Bergman and Szegő kernels. Our approach relies on the analysis of some proper holomorphic liftings of our domains to some suitable manifolds.
Kyong T. Hahn (1972)
Journal für die reine und angewandte Mathematik
Page 1