Carleman's formulas and conditions of analytic extendability
We obtain an extension of Jack-Miller-Mocanu’s Lemma for holomorphic mappings defined in some Reinhardt domains in . Using this result we consider first and second order partial differential subordinations for holomorphic mappings defined on the Reinhardt domain with p ≥ 1.
Let be an analytic functional and let be the corresponding convolution operator on Sato’s space of hyperfunctions. We show that is surjective iff admits an elementary solution in iff the Fourier transform μ̂ satisfies Kawai’s slowly decreasing condition (S). We also show that there are such that is not surjective on .
On a finite intersection of strictly pseudoconvex domains we define two kinds of natural Nevanlinna classes in order to take the growth of the functions near the sides or the edges into account. We give a sufficient Blaschke type condition on an analytic set for being the zero set of a function in a given Nevanlinna class. On the other hand we show that the usual Blaschke condition is not necessary here.
We consider a Cauchy problem where , and is a non-negative function satisfying the condition: We obtain the conditions under which can be continued to all of . This depends on , and the properties of .
I give a characterization of the pseudoconvex Hartogs domains in that satisfy the equation , where is the second cohomology group of with coefficients in the constant sheaf .
Let be a coherent subsheaf of a locally free sheaf and suppose that has pure codimension. Starting with a residue current obtained from a locally free resolution of we construct a vector-valued Coleff-Herrera current with support on the variety associated to such that is in if and only if . Such a current can also be derived algebraically from a fundamental theorem of Roos about the bidualizing functor, and the relation between these two approaches is discussed. By a construction...