On the Bohr radius for two classes of holomorphic functions.
Let be a germ of a reduced analytic space of pure dimension. We provide an analytic proof of the uniform Briançon-Skoda theorem for the local ring ; a result which was previously proved by Huneke by algebraic methods. For ideals with few generators we also get much sharper results.
We study the integral representation of solutions to the Cauchy problem for a differential equation with constant coefficients. The Cauchy data and the right-hand of the equation are given by entire functions on a complex hyperplane of . The Borel transformation of power series and residue theory are used as the main methods of investigation.
We apply the Rudin idea to represent the Bergman kernel of the Hartogs domain as the sum of a series of weighted Bergman functions in the study of the dependence of this kernel on deformations of the domain. We prove that the Bergman function depends smoothly on the function defining the Hartogs domain.
We establish an inversion formula for the M. M. Djrbashian A. H. Karapetyan integral transform (cf. [6]) on the Siegel domain , . We build a family of Kähler metrics of constant holomorphic curvature whose potentials are the -Bergman kernels, α > -1, (in the sense of Z. Pasternak-Winiarski [20] of . We build an anti-holomorphic embedding of in the complex projective Hilbert space and study (in connection with work by A. Odzijewicz [18] the corresponding transition probability amplitudes....